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Abstract

The characteristics of non-Brownian fiber suspensions depend on the properties of the
fibers, the suspending fluid, and fiber interactions. This thesis describes the develop-
ment and application of a fiber-level simulation technique to probe these relationships.
Fibers are modelled as chains of rigid spherocylinders connected by ball and socket
joints, including such features as fiber flexibility, non-straight equilibrium shapes, and
interfiber friction. The model and simulation technique were employed to probe the
effect of these fiber features on floc formation, floc dispersion, and the rheological
properties of fiber suspensions in shear flow, as well as to study the formation and
mechanical properties of planar fiber networks.

Simulations demonstrate that flexible fibers that interact via interfiber friction
will flocculate in simple shear flow, even in the absence of attractive forces between
fibers. The degree of flocculation depends on the fiber equilibrium shape, fiber stiff-
ness, and coefficient of friction. The results are consistent with the elastic fiber
interlocking mechanism of floc coherency.

Flocs formed in simple shear flow were observed to disperse when isolated
in various unbounded linear flow fields (i.e., simple shear, uniaxial extension, and
planar extension). Shear flow completely disperses flocs at a rate that increases with
decreasing fiber stiffness and coefficient of friction. Flocs in extensional flows initially

disperse much faster than flocs in shear flow at similar deformation rates. However,



iii
the dispersion in extensional flow is incomplete, as smaller secondary flocs remain
intact.

Simulated fiber suspensions exhibited non-Newtonian behavior, including shear
thinning, which depends on the fiber aspect ratio and shape. When flocs form in
sheared suspensions, this shear thinning regime persists to lower shear rates than
that observed for homogeneous suspensions. Fiber equilibrium shape significantly in-
fluences the suspension rheology. The suspension viscosity and first normal stress dif-
ference increase as the equilibrium fiber shape deviates more from perfectly straight.

The model and simulation technique were modified to simulate the formation of
planar fiber networks. The networks were then elongated in the plane of the network,
in order to investigate their mechanical properties. The predicted mechanical response
agrees qualitatively with that observed experimentally. The tensile strength increases

as the fiber stiffness, coefficient of friction, and fiber aspect ratio increase.
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Chapter 1

Introduction

1.1 Motivation and project overview

Particulate suspensions appear in a wide variety of applications, including mineral
processing, pulp and paper production, and biological processes. The particles may be
spherical, flakes, fibers, or more complicated geometries with characteristic particle
lengths ranging from nanometers to centimeters, and may be suspended in either
Newtonian or non-Newtonian fluids. The work presented here focuses on suspensions
of non-Brownian fibers like those found in wood pulp suspensions and fiber-reinforced
composites. Fibers in suspensions assume a variety of conformations. For example,
rigid fibers rotate with a prescribed period in a simple shear flow, and interact with
other fibers. Real fibers take on a variety of equilibrium shapes (i.e., fibers are not
generally straight), and also tend to deform when subjected to hydrodynamic forces.
All of these factors affect the suspension microstructure. The overall goal of this work
is to gain an understanding of how fiber characteristics affect the microstructure and
rheology of fiber suspensions and networks.

In many applications involving fiber suspensions, one desires to control the

microstructure (i.e., fiber positions and orientations). For example, a homogeneous



Figure 1.1: Suspension of softwood pulp fibers in water, in which heterogenous struc-
tures (flocs) are observed.

suspension of wood pulp is desired in the headbox of a paper machine. Heteroge-
neous structures, known as flocs (illustrated in Fig. 1.1), can lead to product non-
uniformities. Other applications may require fibers to align in a given direction or
form flocculated structures. Thus, understanding the factors that control the suspen-
sion microstructure is crucial.

In the remaining sections of this chapter, a review of fiber systems is presented.
We start by discussing single particle dynamics and behavior of elongated particles.
Previous studies on the flocculation of fiber suspensions, floc dispersion, rheology of
fiber suspensions, and modelling aspects are also discussed.

In Chapter 2 we present our particle-level simulation technique for probing
the relationship between fiber characteristics and the properties of fiber suspensions.
Fibers are modelled as rigid cylinders with hemispherical end-caps, connected by ball
and socket joints that allow the fibers to bend and twist. The fibers may interact
through mechanical contact forces. By knowing all of the forces and torques that act
on the fibers, we can solve the equations of motion of the fibers and determine the

suspension microstructure. Using the model, we have been able to study the fiber
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characteristics that affect flocculation, floc dispersion, suspension rheology, and the
mechanical strength of planar fiber networks.

Chapters 3-6 contain the results of simulations of fiber systems. Each chapter
is self-contained, including a discussion of the relevant background material, and a
brief description of the model, along with a discussion of the simulation results. Thus,
each chapter may be read independently.

Results of simulations probing flocculation of fiber suspensions in simple shear
flow are presented in Chapter 3. We find that when model fibers are flexible, have
deformed equilibrium shapes, and interact through static friction forces, fiber suspen-
sions can form heterogeneous structures, or flocs. Adding kinetic friction and weak
attractive forces as features to the model fiber have little effect on the flocculation
behavior of suspensions, while anisotropic fiber bending tends to shift the onset of
flocculation to higher coefficients of friction.

Simulations of the dispersion of isolated flocs in various linear flow fields are
presented in Chapter 4. The flocs are subjected to unbounded simple shear and
extensional flow fields. Flocs in simple shear flow disperse more quickly as the fiber
stiffness and coefficient of friction are decreased. Extensional flows tend to initially
break up flocs faster than in simple shear, but often leave coherent secondary flocs of
substantial size.

Rheological properties of simulated fiber suspensions in simple shear flow are
presented in Chapter 5. The suspension viscosity is strongly influenced by the fiber
shape, stiffness, and coefficient of friction. The yield stress of fiber suspensions scales
with volume fraction in the same manner as that observed experimentally. Floccu-
lation impacts the suspension viscosity by extending shear thinning regimes to lower

shear rates than that observed for homogeneous fiber suspensions.
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Extensions of the model to simulate the formation and mechanical testing of
planar fiber networks are presented in Chapter 6. Fiber “sheets” are formed by
squeezing a suspension between parallel plates. The resulting planar networks are
then elongated at a constant strain rate, and the required tensile force is calculated.
As in previous chapters, we find that the fiber shape, stiffness, length, and coefficient
of friction impact the tensile strength of these simulated fiber networks.
The main conclusions from this research are summarized in Chapter 7. Also

presented in this chapter are recommendations for future work.

1.2 Single particle motion

The motion of particles in a suspension is influenced strongly by hydrodynamic forces
exerted by the suspending fluid. The suspending fluid velocity u is governed by the

equations of continuity and motion,

ap B
E—FV-(pu) =0 (1.1)
p(g—?—l—u-Vu) = V.o + pof, (1.2)

where p is the fluid density, o is the stress in the fluid, and f represents external body
forces. The Reynolds number Re, of interest is defined based on the length scale of

a particle,

dpU
Re, = :; : (1.3)

where d is the characteristic particle dimension, 7, is the fluid viscosity, and U is a
characteristic particle velocity. For typical suspensions of small particles in viscous
liquids, Re, < 1, which implies that inertia can be neglected in the equation of motion

[49]. Suspending fluids are commonly incompressible and Newtonian, resulting in the



simplified equations of continuity and motion,

V.ou = 0, (1.4)

n,V’u—Vp = 0, (1.5)

in which Eq. (1.5) is known as the Stokes equation.
The velocity field described by the Stokes equation for flow past a rigid particle
can be represented by a distribution of point forces exerted on the fluid, distributed

about the particle surface. The velocity at a point x in the fluid becomes [49],

u(x) = U%(x) ~ f [o(€) - Gx - ) dSI(E). (16)

s
where U is the ambient fluid velocity, n the unit outward normal to the particle
surface, dS is a surface area element on the particle surface, and G is known as the

Oseen tensor,

G(x) = — FMixx], (1.7)

r r3

/2 The velocity field far from the particle can be approximated by

with r = (x - x)
expanding G(x — &) in a Taylor series around & = 0 and substituting the expansion
into Eq. (1.6). This form of the velocity field is known as the multipole expansion and

the first two terms may be expressed as

u(x) - U®(x) — —[étrndS] G(x) + (1.8)
F
e [%g(aqa)xst}Vg +
T
5 o mgglom) a5 - 36 f (o) gas| WG+,

S
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where the bracketed terms are the hydrodynamic force (F), torque (T), and stresslet
(S) on the particle.

The linearity of the Stokes equation allows F, T, and S to be related to the
particle translational velocity r, particle angular velocity w, and ambient rate of strain

tensor E*° as

F A B G U® — 7
T|=|B C H Q*° —w |, (1.9)
S G HM E>

where A, B, and C are second-rank resistance tensors, G and H are third-rank
resistance tensors, and M is a fourth rank resistance tensor, all of which are only
functions of the particle geometry. The tilde terms indicate symmetries with the
corresponding tensors (e.g., H;jx = H kij) [49]. The ambient angular velocity and rate

of strain tensor are

Q* = - [V x U (1.10)

E* =

NN

(VU™ + (VU>)T]. (1.11)

The form of Eq. (1.9) is known as the resistance problem, in which unknown forces and
torques are to be determined for known translational and angular velocities. Alter-
natively, the mobility form is the inverse problem in which the unknown translational

and angular velocities are to be found for known forces and torques.

1.2.1 Rigid fibers

Jeffery [41] described the motion of an ellipsoidal particle in a Newtonian fluid with
a velocity field U* = (4y,0,0), where % is the shear rate. A prolate spheroid (an
elongated ellipsoid of revolution with a circular cross section) rotates with a constant

period that depends on the aspect ratio of the particle, r, = ¢/b, where ¢ is the



Figure 1.2: (a) Euler angles for a fiber and (b) path of the end point of a spheroid
with r, = 10 for different orbit constants, C'

half length of the major axis and b is the half length of the minor axis. The spheroid
remains on its initial streamline and periodically repeats the same orbit in the absence
of external forces (i.e., contacts, body forces, etc.). In spherical coordinates [see

Figure 1.2(a)], the angular motion of an isolated prolate spheroid is written as

Cr
tanf = 2 , 1.12
o [r2 cos? ¢ + sin® ¢]'/2 (1.12)

vt
tang = rptan< 7 1), (1.13)

+_
p rp

where C' is a constant of integration, called the orbit constant. The orbit period is
T =2n(rp,+r,")/¥. Figure 1.2(b) shows paths of an end point of a spheroid centered
at the origin for various values of C'. The orbit constant can vary from 0 < C' < oc.
An orbit constant of C' — oo corresponds to the spheroid tumbling in the plane of
shear, and an orbit constant of C' = 0 corresponds to a “log rolling” motion where
the spheroid spins in the vorticity direction. An isolated spheroid with a large aspect
ratio spends most of the time roughly aligned in the direction of flow and quickly flips
every half period.

Prolate spheroids are an idealization of a rigid fiber. In reality, many fibers

have rod-like shapes that are best described as cylindrical. Bretherton [16] showed
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that any axisymmetric body with fore-aft symmetry in a linear flow field will have a
closed orbit and will not drift across streamlines. In addition, the dynamics of the
axisymmetric body are identical to that of a prolate spheroid with an “equivalent
aspect ratio”, ro = Ar,, where X is the ratio of the equivalent and real aspect ratios.
Trevalyan and Mason [89] demonstrated this experimentally by measuring the orbit
periods of glass fibers in a Couette shearing device at low shear rates. The cylindrical
particles rotated in Jeffery orbits, but the periods of rotation were shorter for the
cylindrical particles than predicted for prolate spheroids with the same aspect ratio.

The ratio of the equivalent aspect ratio to the measured aspect ratio ranged from \ =

0.57-0.72 for r, = 17.8-132, in which X\ decreased as 7, increased.

1.2.2 Flexible fibers

Elongated particles are not perfectly rigid and can deform during flow. The straining
motion in the flow field can produce sufficiently large axial forces to cause the fiber
to buckle during rotation. Burgers [32] found the critical stress required to buckle a

fiber to be
Ey (In2r, — 1.75)
2r3 ’

(700) exit = (1.14)

in which the bending modulus of the rod is E, ~ 2Fy, where Fy is the Young’s
modulus of the fiber.

A flexible fiber in a flowing fluid can assume a variety of shapes as it rotates.
Forgacs and Mason [31, 32] performed experiments on different types of flexible fibers
to examine fiber motion. Dilute suspensions of fibers were observed between rotating
concentric cylinders. Stiff fibers tended to rotate with periodic closed orbits as pre-
dicted by Jeffery [41]. The effective flexibility of fibers was varied by adjusting the

fluid viscosity, the shear rate, and by using fibers of different aspect ratios. As the
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Figure 1.3: Classification of flexible fibers orbits based on fiber flexibility [31]

fluid viscosity and shear rate increase, the viscous forces acting on a fiber increase to
cause it to appear more flexible. Longer fibers exhibit lower critical stresses necessary
for buckling [see Eq. (1.14)], and thus are effectively more flexible.

By changing 7,, 7, and r,, the effective flexibility of the fibers was increased
such that the stress in the fiber exceeded (7,7 )ait, and the fibers were said to rotate
with springy orbits. In this case, the motion was similar to that predicted for a rigid
fiber when the fibers were nearly aligned in the direction of flow. As the orienta-
tion angle ¢ approached 7/4 (the angle of maximum compression), the fibers slightly
buckled, then snapped back to nearly straight as they realigned with the flow direc-
tion. As the fibers became even more flexible, they exhibited more complex rotations
classified as flexible orbits. Examples of the various conformations of flexible fibers

observed are summarized in Figure 1.3.
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1.3 Fiber suspensions

Fibers suspended in a liquid medium change the macroscopic properties of the liquid,
which are determined by the distribution of positions and orientations of fibers in
the suspension. Depending on the application, a homogeneous fiber distribution may
be desired, such as in paper making, or aligned fibers may be required, such as in
certain polymer composites processing. In principle, if the suspension microstructure
is known, then the macroscopic properties may be calculated.

One manner in which fiber suspensions are characterized is by concentration,
employing terminology similar to that used for polymer solutions [98]. A fiber sus-
pension is said to be dilute if less than one fiber on average is found in a spherical
volume of diameter equal to the fiber length; i.e., nL3 < 1, where n is the number
of fibers per unit volume and L is the fiber length. The semi-dilute regime is char-
acterized by 1 < nL® < r,,, in which fibers are significantly hindered during rotation
due to interactions with other fibers. Above nL?® > r,, the suspension is said to be
concentrated, and every fiber is assumed to be interacting with other fibers to form a

network.

1.3.1 Flocculation of fibers

In applications such as paper making and the processing of some fiber-filled compos-
ites, a homogenous dispersion of fibers is desired in order to yield a uniform product.
Wood pulp fibers in particular tend to aggregate in a process known as flocculation,
which produces spatially heterogeneous structures. The term flocculation is defined
as the state of unevenness in a fiber suspension, or as the process by which fiber flocs

form.
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Flocculation only occurs if fibers interact. Most commercially relevant fibers
are too large to be brought into contact by Brownian motion, and therefore they
must be mechanically agitated (i.e., subjected to external forces) to cause them to
interact. Mason [56] reasoned that the externally forced motion of fibers is a major
factor in determining suspension structure and flocculation behavior. Experiments
have demonstrated that numerous factors affect flocculation including concentration,
fiber size, fiber shape, surface characteristics, solution characteristics (i.e., ion type
and concentration, fillers, viscosity, etc.), shear rate, and turbulence.

Mason [55] studied the motion of fibers by shearing pulp suspensions between
two concentric glass cylinders. He observed the formation of flocs at low shear rates,
and the dispersion of the flocs as the shear rate increased. Mason described floccula-
tion as a “dynamic equilibrium” process in which fibers are constantly moving in and
out of flocs, breaking and reforming contacts. Fiber suspension structure has also
been studied using flow loops. In these types of experiments, the fiber suspension
flows through a section of tubing through which light is passed. The intensity of the
transmitted light is measured to assess the homogeneity of the suspension. Using this
method, Robertson and Mason [70] and Takeuchi et al. [85] found that flocs tend to
form as the velocity is decreased. They also determined that the tendency to form
flocs increases with concentration. Beghello [11] developed an image analysis tech-
nique for determining floc size of wood pulp suspensions in a flow loop. He found
that as the concentration and fiber aspect ratio increased, the floc size increased as
well. The size of flocs decreased if the suspending fluid viscosity increased, the fiber
surface was charged by carboxymethylation, or a low molecular weight polymer (car-
boxymethylcellulose) was added to the suspension. These observations suggest that

fiber interactions are important in determining suspension structure.
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Processing of suspensions of pulp fibers often occurs in turbulent flow. In-
creasing the flow velocity to the point of turbulence can cause flocs to disperse into
a homogeneous suspension. However, in areas of decaying turbulence, Andersson [4]
observed that flocs reformed in his flow loop. Kerekes and Schell [45] investigated the
formation of flocs in decaying turbulence by moving a plunger with a 2-dimensional
grid attached to a stationary channel and observing the fiber suspensions upon ces-
sation of the plunger motion. They found that as the concentration increased, the
suspension formed flocs with greater coherency in the decaying turbulence. Zhao
and Kerekes [101] used the same apparatus to examine the effect of the suspending
liquid viscosity on flocculation. Lower viscosity suspending fluids tended to produce
flocculation more readily in the decaying turbulence. Kerekes [44] hypothesized that
the reason flocs form in decaying turbulence is that the decelerating flow tends to
crowd fibers together. Soszynski and Kerekes [81, 82] further investigated this mech-
anism by examining the behavior of nylon fibers in a rotating, half-filled, horizontal
cylinder. The recirculating flow patterns that resulted possessed regions of accelera-
tion and deceleration. Flocs were observed to form above a threshold concentration
in the regions of decelerating flow. As the circulation continued, flocs densified and
developed significant mechanical strength.

The character of fiber interactions can be described in terms of the concentra-
tion. Mason [56] defined a critical concentration @, as one fiber on average in the
spherical volume with a diameter equal to the fiber length, ®. = 3/ 27“}2,. Above this
concentration, fibers can no longer rotate without interacting with other fibers. The
number of fibers any given fiber may interact with as it rotates is called the crowding
factor Newowa [47],

12

2
Nerowd = gq)r; A 50’”5’ (1.15)
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where @ is the volume fraction, C,, is the mass fraction of fibers (consistency), and
w is the linear density (coarseness) of the fiber. The crowding factor can also be
related to the number of contacts per fiber n., by employing the fiber network model
of Meyer and Wahren [58],

4 mnd

Nerowd = = <. 1.16
d 3n.—1 ( )

Kerekes and Schell [45] observed that increasing Neyowq resulted in stronger flocs
for both nylon and wood pulp fibers in cyclic flows of decaying turbulence. Coherent
flocs tended to form for Neowa 2 60 for longer fibers (1, > 68), which corresponds to
approximately three contacts per fiber—the minimum number of contacts necessary to
lock fibers into a network [58]. Shorter nylon and wood pulp fibers (r, < 46), however,
would not flocculate even at very large values of Niowa. Zhao and Kerekes [101]
found that increasing the suspending fluid viscosity increased the critical crowding
factor, defined as the value of Niowa at which coherent flocs begin to form. Flocs
formed at very high crowding factors can also be dispersed by adding water soluble
polymers into concentrated pulp suspensions [100]. These results suggest flocculation
is not determined solely by the value of N..owq, since other parameters such as fiber
flexibility, suspending fluid properties, and fiber interactions appear to be important.

The mechanisms that produce fiber networks and coherent flocs are related
to fiber-fiber contacts. The phenomena that contribute to fiber contacts may be
divided into four categories [47]: colloidal forces, surface tension effects, mechanical
surface linkages, and elastic fiber interlocking. Figure 1.4 illustrates examples of these
phenomena.

Colloidal forces between fibers occur due to the chemical characteristics of
the fibers and the suspending fluid. These include electrostatic interactions, van der

Waals forces, hydrogen bonding, etc. Colloidal forces are challenging to quantify for
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gas bubble

colloidal forces surface tension

mechanical surface linkage elastic fiber interlocking

Figure 1.4: Examples of fiber interactions in a suspension.

chemically heterogeneous particles with rough surfaces, such as wood fibers.

Surface tension effects are due to entrained gas within a fiber suspension.
Bubbles of gas may appear in fiber suspensions due to mixing or other processing. The
bubbles lodge in particle interstices and create an effective attractive force between
particles, which may affect or even cause flocculation.

Mechanical surface linkages form due to contacts involving irregularly shaped
fibers and fibers with surface protrusions. Fibers like those found in pulp suspensions
are naturally deformed at equilibrium and may become entangled by “hooking” or
intertwining (see Fig. 1.4). In addition, fibers may be fibrillated—that is, small fibrous
entities (fibrils) of the fiber may extend out from the fiber surface. In this case, the
fibrils of contacting fiber surfaces may become mechanically entangled.

Elastic fiber interlocking occurs when flexible fibers form an elastic network.
Flowing fiber suspensions may experience sufficient viscous forces to cause fibers to
elastically deform from an equilibrium configuration. As the fibers attempt to relax,

they can become locked in elastically strained configurations due to contacts with
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other fibers. The fiber surfaces experience friction forces which are proportional to the
normal force between fibers, and the normal force is a function of the fiber flexibility.
Flocs formed through this fiber interlocking mechanism store elastic energy and have
mechanical strength.

For many fiber suspensions, mechanical and elastic effects are the dominant
mechanisms that determine structure and network strength [33, 47, 56]. Meyer and
Wahren [58] developed a simple network theory to explain the elastic behavior ob-
served in concentrated fiber suspensions. They assumed that fibers behave like elastic
bodies that form networks in which fibers are locked in position due to interfiber con-
tacts. Meyer and Wahren derived an expression for the network shear modulus based
on the number of contacts per fiber, the fiber aspect ratio, and the fiber Young’s mod-
ulus. Farnood et al. [29] used this simple network theory to develop expressions for
the shear and tensile strengths of a floc. The mechanism of elastic fiber interlocking
is consistent with experimental results, such as the observation that increasing the
suspending fluid viscosity leads to a lower shear modulus (decrease in elastic energy
storage) [83] and a less flocculated state [11, 101].

Soszynski and Kerekes [81, 82] produced experimental evidence that fiber in-
terlocking via elastic bending exists in suspensions of nylon fibers. This was accom-
plished by removing coherent flocs from a suspension, heating them above the glass
transition temperature of nylon to relax the bending stresses, and upon cooling, agi-
tating the flocs to try to disperse them. The heat-treated flocs dispersed upon light
agitation whereas the never-heated flocs dispersed only under strong agitation, sug-
gesting that cohesion was caused by interlocking of elastically bent fibers. In other
words, fibers need to be stiff enough to store sufficient elastic energy when deformed,

and remain in strained configurations in order to form flocs or fiber networks.
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Floc dispersion

Flocs are usually dispersed by applying sufficient mechanical stress to the suspension
in order to break the fiber contacts and pull the flocs apart. This is often accomplished
by subjecting the suspension to turbulent flow. Andersson [4] observed the motion of
pulp fiber suspensions in turbulent flow. He noted that floc destruction dominated
over floc formation in the turbulence zone; however, flocs were seen to form in decaying
turbulence. Andersson developed an expression for the probability of floc rupture in
turbulent flow using the tensile stress exerted on the fiber network. Takeuchi et al.
[85] studied the destruction of flocs in a turbulent flow in various channels. The
rate of destruction increased with increasing flow velocity, and the destruction time
depended on the type of fiber (i.e., hardwood or softwood). In both of these studies,
however, it was difficult to determine a mechanism that caused floc rupture.
Mechanisms of pulp floc rupture were qualitatively investigated by Lee and
Brodkey [52], in which the break up of individual flocs was observed in turbulent
flow between two oppositely moving belts. They characterized floc dispersion by
two major processes, global scale disruption and small scale surface erosion. Global
disruptions were distinguished by major changes to the floc shape, including break-
ing into secondary flocs, stretching into string-like structures, and floc disintegration.
Surface erosion occurs over the surface of the floc and accounts for the loss of individ-
ual fibers from the floc. Lee and Brodkey also used the term shedding to distinguish
a type of dispersion somewhere between global and surface erosion, in which flocs
occasionally lose small clumps of fibers from the main body of the floc. Global scale
disruptions were most prevalent at high stress levels. However, global disruption of
flocs only occurred if the stress was applied for a significant time. At low stress levels

in which the turbulent length scale is much larger than the floc size, flocs followed
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the motion of the flow and tended to lose fibers by surface erosion and shedding
mechanisms.

The fact that flocs tend to get pulled apart or form string-like structures sug-
gests that the extensional character of the flows is important. Kerekes [43] studied the
behavior of pulp flocs upon entry into constrictions, which approximate extensional
flow. Kerekes observed that flocs first stretched upon entering the constriction, and
then ruptured if the stress was high enough. He characterized the rupture as tensile
failure after substantial elongation of the floc. Flocs did not always rupture, which
was attributed to insufficient hydrodynamic stresses, and that sometimes the flocs
simply did not spend enough time in the flow field to be deformed to the rupture

point.

1.3.2 Fiber suspension rheology
Experimental data on fiber suspension rheology

Fiber suspensions can exhibit non-Newtonian fluid characteristics similar to poly-
mer melts and solutions. Suspension rheological properties depend on the properties
of the fluid, fibers, fiber interactions, and the flow field. Suspensions of long fibers
(r, > 150) in Newtonian liquids have been observed to exhibit the Weissenberg effect
(i.e., rod-climbing) which becomes more pronounced as the aspect ratio and fiber con-
centration increase [57, 61]. Busse [17] found that Teflon fibers in some polymer melts
demonstrated increased die swelling compared to the neat polymer melt. Fiber-filled
polymer melts extruded through circular dies exhibited dramatic surface irregularities
at low shear rates that were not attributed to polymer melt fracture [10, 48]. Mea-

surement of the rheological properties of fiber suspensions is difficult because of the
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numerous suspension parameters, as well as issues with the experimental apparatus
(i.e., wall-fiber interactions).

Some suspensions of fibers exhibit visco-elastic behavior. Wahren [91] at-
tributed this type of behavior to the formation of elastic fiber networks. He performed
creep and stress relaxation measurements on pulp suspensions which demonstrated
behavior similar to solid viscoelastic materials. The simple network theory of Meyer
and Wahren [58] described previously performed well for predicting the shear modulus
of suspensions measured experimentally [87]. Shear thinning behavior and positive
first normal stress differences were observed in suspensions of long glass, nylon and
vinylon fibers, which became stronger as the aspect ratio, flexibility, and concentra-
tion increased [34, 50, 51].

At lower aspect ratios (1, < 50), fiber suspensions still exhibit elastic behavior
[18, 64], but not as pronounced as that for longer fibers. Chaouche and Koch [18] ob-
served that shear thinning of short nylon fibers in a viscous Newtonian fluid occurred
at lower shear rates than that observed for suspensions of longer fibers. Since fibers
at these conditions are quite stiff, Chaouche and Koch attributed the shear thinning
behavior to adhesive forces between fibers.

At low shear rates and sufficiently high concentrations (semi-dilute), fiber sus-
pensions require a minimum applied stress (i.e., a yield stress) to make the suspension
flow. The yield stress of various wood pulp and nylon fiber suspensions in low viscosity
liquids was measured by Bennington et al. [12] using a rotary shearing device. They
found that the yield stress (o) scaled with the volume fraction as oy ~ ®°, where
the exponent (3 varied from 2.5-3.5, consistent with simple fiber network theory [58]
which gives = 3. The network theory also suggests that the yield stress should scale

linearly with the fiber Young’s modulus; however Bennington et al. did not observe
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this scaling in their experiments. Kitano and Kataoka [50] measured the dynamic
yield stress of vinylon fiber suspensions in a viscous silicone oil by extrapolating the
shear stress data to zero shear rate. They found approximately the same dependence
on volume fraction as Bennington et al. for shorter fibers (r, ~ 45). Suspensions of
higher aspect ratio fibers showed a substantial decrease in (3, which was attributed to
fiber interactions, increased effective flexibility, and wall effects.

The rheology of planar fiber networks is important in determining wet-web
strength when making paper and determining the strength of formed sheets of paper.
Planar fiber networks subjected to mechanical extension show viscoelastic behavior
at small strains, then experience plastic deformation before the network ruptures [62].
The limiting factors in the overall strength of a fiber network is the type of contacts
between fibers (i.e., friction, hydrogen bonds, etc.) and the strength of the fibers
themselves [24]. Numerous other parameters affect the network strength, a summary
of which has been compiled by Niskanen [62].

Mohlin et al. [60] examined the effect of shape on the tensile strength of soft-
wood fiber handsheets. They measured the fiber deformation in terms of curl, which
is related to the ratio of the end-to-end distance and the contour length, and by count-
ing the number of defects (i.e., kinks, twists, microcompressions, etc.) per fiber under
a microscope. Mohlin et al. observed that the network tensile strength increased as
the fibers became straighter or contained fewer defects. Seth [77] observed that as
fiber length increased and coarseness (mass per length of fiber) decreased, the ten-
sile strength also increased in wet webs. This was attributed to the fact that longer
fibers experience more contacts per fiber, and it is the contacts that give the network
strength. Fibers that are less coarse have thinner walls which allow them to collapse

and experience larger bonding areas.
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The fiber shape, length, and coarseness are all affected by refining which de-
creases the freeness, or drainability, of the fiber network. Fibers with a high freeness
tend to be deformed and have large values for the coarseness. In general, refining
leads to fiber shortening, increased external fibrillation, equilibrium shape changes,
and fiber collapse [53]. Thus, networks formed from refined fibers have greater tensile
strengths than those formed from unrefined fibers [53, 62|. Forgacs et al. [33] also
observed that the tensile strength of wet webs increased with decreasing freeness,

which they attributed to the importance of friction forces between contacting fibers.

Predicting rheological behavior

Rheological properties of fiber suspensions, such as the stress, may be calculated
from knowledge of the structure, i.e., the positions and orientations of the fibers. In

general, the bulk average stress (o) in a particulate suspension is
(o) = —Pd + 21n,E™ + 0P, (1.17)

where P is the bulk pressure and oP is the particle contribution to the bulk stress.

The particle contribution to the stress in a suspension of volume V' is [7, 49|

oP = %Z g {[o - n]x — n,[un + nu]} dS, (1.18)

where Sy is the surface of a particle, n is the unit outward normal to the particle
surface pointing into the suspension, and the summation is over all particles in the
suspension. For rigid particles, the integral over un + nu is zero. Since the stress is

symmetric [49], Eq. (1.18) simplifies to

oF = %Zﬁ {[o - n]x +x[o -]} dS. (1.19)
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In order to utilize Eq. (1.19) for fibers, it is commonly assumed that the fibers

are long and slender (1, < 1), and thus o -n may be approximated using slender-body
theory [6, 23, 88]. The basic idea of slender-body theory is that the disturbance to
the flow field containing a long slender body can be approximated as the disturbance
due to a line distribution of point forces along the body [6]. The slender-body theory
approximation for the particle contribution to the stress for long fibers that only

interact via hydrodynamic interactions is given by [54]

=5 (| g SF(9pspP(s) - (P P8 ds). (120

where p is the orientation vector of the fiber, F(s) is the point force per unit length
exerted at the axial position s on the fiber, ¢ is the fiber half-length, and the angled
brackets indicate the average over all fibers in the suspension. Batchelor [8] used
the slender-body theory to derive an expression for oP for a dilute suspension of

non-interacting rigid fibers,

o® =™ | (pppp) : B — %((pm tE*)d |, (1.21)

where nfi® = nrL3n,/61n(2r,), as a first approximation for fibers with a circular
cross-section.

As the concentration increases into the semi-dilute regime, fiber interactions
affect the suspensions stress. Batchelor [8] developed an alternative expression for
n"® for semi-dilute suspensions of aligned fibers in a pure straining flow, and Shaqfeh
and Fredrickson [78] generalized this for isotropically orientated fiber suspensions.
Mackaplow and Shaqgfeh [54] numerically calculated F(s) and the velocity field for a
variety of fiber configurations, and used the simulated data to find the bulk stress in
the suspension. They found that the simulated data corresponded well with exper-

imental results at lower concentrations, but started to deviate as the concentration
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increased. This was attributed to slender-body theory underpredicting the effects of
close fiber-fiber interactions.

If fibers experience a net hydrodynamic force, Eq. (1.20) can be modified to
calculate the particle stress. A net hydrodynamic force may occur due to mechanical
contacts between fibers or the presence of an external force or moment. The particle

contribution to the stress becomes (see Appendix A)

n

o = 3 / SF(9)p -+ spP(s) = (T () p)d | ds (1.22)

2
+ Fdp 4 pFvd g(thd : r)5> ,

where F'¥? is the net hydrodynamic force on the fiber and r is the fiber center-of-
mass. Using the leading order slender-body theory approximation, the hydrodynamic

force per unit length F(s), and the net hydrodynamic force F¢ are

R = s |5 pee] (0% i - s, (123)
Fivd = ligrf) {5 - %pp} A(U(r) — 1) (1.24)

1.3.3 Determining fiber suspension structure

Ideally, we would like to be able to predict flocculation behavior and calculate rheo-
logical quantities a priori. The difficulty lies in obtaining the structure of the suspen-
sion, which is necessary for calculating the average stress in Eq. (1.22). Two methods
are commonly employed for determining the structure of fiber suspensions: obtaining
distribution functions from the solution of conservative equations, and direct particle-

level simulations.
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Distribution functions of fiber structure

Structure of fiber suspensions can be described statistically by distribution functions
of the positions and orientations. The probability density of finding a fiber with
center at r and orientation of p at time ¢ is represented by the distribution function

U(r, p,t), which can be factored as [25]

U(r,p,t) = n(r, 1)P(p, 1), (1.25)

where n is the position-dependent number density, and 1 is the orientation distribu-
tion function. For a spatially uniform distribution of fibers, n is a constant.

The orientation distribution function 1 can be used to calculate average orien-
tation moments of the suspension (i.e., (pp), (PPPP),. ..) which are typically needed
for finding the suspension stress. The averages of the odd moments of p are zero and

the averages of the even moments such as (pppp) are obtained via

(PPPP) = / ppppY dp. (1.26)

The evolution of the orientational distribution function is described by the equation

Dy 9 .
o = (% : p¢> : (1.27)

where D/Dt is the substantial derivative operator. To solve Eq. (1.27) for v, a

of continuity for v,

constitutive relation for the time rate of change of the fiber orientation vector p
is needed. Dinh and Armstrong [25] approximated p with the motion of a prolate
spheroid using Jeffery’s equations [41], which assumes no particle interactions. Folgar

and Tucker [30] added a correction term to p to account for interactions,

yH 109
5= Q> —_[E®-p—E>: — Op—=— 1.28
p xp+ e [EXp PPP] o (1.28)
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where the last term describes the rotary diffusion of a fiber, characterized by an
empirical constant C; called the interaction coefficient. Numerous researchers have
used this method to estimate macroscopic flow properties of fiber suspensions [25,
30, 40, 68, 69, 90]. Fan et al. [27] assumed that rotary diffusion was effectively a
random process, and replaced the rotary diffusion term in Eq. (1.28) with a Brownian
noise term. These methods can be used to predict suspension averaged properties by
assuming a form of the particle stress that depends on the moments p, but they
cannot predict the evolution of heterogeneous distributions of particle mass, as is

required to describe flocculation.

Direct simulation techniques

Direct particle-level simulation techniques are used to calculate the position and ori-
entation history of a system of particles in a fluid by numerically solving Newton’s
equations of motion (conservation of linear and angular momentum) for each particle

i

mi; = Y F; (1.29)

where m; is the particle mass, J; is the moment of inertia tensor, and F; and T; are
the forces and torques on particle 7. The forces and torques acting on the particle
may include contributions due to hydrodynamic drag, hydrodynamic interactions,
external fields, Brownian motion, direct mechanical interactions, and any additional
kinematic constraints to the particle motion. Particle inertia is often neglected as
well, which reduces the equations of motion to simple force and torque balances on

the particles.
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If the particle Reynolds number [Eq. (1.3)] is much less than one, the velocity
disturbances caused by the particles are described by the Stokes equation, which
results in a linear relationship between all of the particle velocities, angular velocities,
and rate of strain tensors [U = (U — 1, Q> —w, E*)] and the hydrodynamic forces,

torques, and stresslets [F = (F, T, S)] on the particles [26],
U=R'F. (1.31)

The matrix R is called the grand resistance matrix, which depends only on the posi-
tions and orientations of the particles. Determining the grand resistance matrix ex-
actly requires the solution of the many-body Stokes equation. Approximate solution
methods employing appropriate summations of far-field and near-field (lubrication)
pairwise hydrodynamic interactions are commonly employed [26, 49].

The term Stokesian Dynamics is used to describe the solution of Egs. (1.29)-
(1.30) for hydrodynamically interacting particles and was originally used to solve for
the motion of suspensions of spherical particles [14]. The method was generalized by
Claeys and Brady [20] to describe suspensions of fibers modelled as prolate spheroids
(ellipses of revolution). The attraction of using prolate spheroids is that the local
surfaces are continuous, and that exact expressions for pair resistance functions can
be obtained [20, 49]. Inter-particle separations may be calculated for arbitrarily
orientated particle pairs in a straightforward manner, and thus interactions between
fiber surfaces can be obtained. Claeys and Brady calculated macroscopic suspension
properties with this simulation technique, including the translational diffusivity, the
rotational diffusivity, the permeability in fibrous packing, and the suspension viscosity
[20, 21, 22]. The disadvantages of this method are the difficulty in building the grand
resistance matrix and the computational expense of finding inter-particle separations

as the spheroid aspect ratio increases.
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Fibers in real suspensions typically resemble cylinders more closely than pro-
late spheroids. Yamane et al. [98] simulated suspensions of non-Brownian cylinders
subjected to simple shear flow in the semi-dilute concentration regime (nL? > 1).
They assumed that the fiber motion could be approximated as that of an isolated
fiber in a Jeffery orbit plus a small perturbation due to near-field hydrodynamic in-
teractions (i.e., lubrication forces). Lubrication forces between interacting particles
are proportional to the rate of change of the separation distance between fibers. Fan
et al. [28] improved upon this model by taking into account long range hydrody-
namic interactions via slender body theory. While this method gave better results
for the Folgar-Tucker constant at higher concentrations compared to that reported
by Yamane et al., it was significantly more computationally demanding and did not
qualitatively change the suspension property predictions. Both methods showed quan-
titative agreement with experimental data for the viscosity at lower concentrations,
but the viscosity deviated as the concentration increased.

As discussed in Section 1.3.1, one of the major causes of structural changes
in fiber suspensions (i.e., flocculation) is mechanical contacts. Sundararajakumar
and Koch [84] developed a fiber simulation method that included direct mechanical
contacts, while neglecting hydrodynamic interactions. They explicitly calculated the
normal force required to keep contacting fibers from passing through each other by
using the constraint of no relative motion in the normal direction between contacting
fibers. The results for the suspension viscosity and first normal stress difference as
a function of concentration showed good agreement with some experimental results.
Their argument for neglecting hydrodynamic interactions is based on how they affect
fiber flipping, and thus the orientation distribution, compared to that resulting from

mechanical contacts. By using the results of Rahnama et al. [67] for the orientation
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distributions of hydrodynamically interacting fibers, Sundararajakumar and Koch
found that for fibers with moderate aspect ratios (7, < 60), mechanical contacts are
the main cause of orientational dispersion. As the aspect ratio increases, they ar-
gued that hydrodynamic interactions become more important relative to mechanical
contacts. However, at concentrations large enough such that each fiber experiences
multiple contacts, mechanical contacts will again dominate over hydrodynamic in-
teractions in determining the suspension dynamics. Evidence for the importance of
hydrodynamic interactions is further supported by the work of Harlen et al. [35] for
simulations of falling ball rheometry of fiber suspensions. They found only mod-
est differences in the drag coefficient by including hydrodynamic interactions with
mechanical contacts compared to simulations with only mechanical contacts, with
smaller differences as the concentration increased. Simulations of fibers with mechan-
ical contacts also showed positive first normal stress differences, while fibers that only
interact via hydrodynamic interactions do not exhibit a first normal stress difference
[66].

Simulation techniques have recently been developed to investigate flexible fiber
suspensions as well. Yamamoto and Matsuoka [93, 94, 95, 96, 97] developed a model
for fibers consisting of linked spheres. The joints between spheres allowed for bending,
twisting, and stretching such that the fibers could assume arbitrary conformations.
The forces and torques on the spheres included: hydrodynamic interactions among
spheres in a single fiber, stretching forces between adjacent spheres in a fiber, bending
and twisting torques between adjacent spheres in a fiber, tangential frictional forces
and moments between adjacent spheres in a fiber, and lubrication forces between
spheres on different fibers. The attraction of modelling flexible fibers in this way is

that calculating the motion of hydrodynamically interacting spheres is well under-
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stood through the use of Stokesian dynamics [14]. Yamamoto and Matsuoka used
this model to predict the viscosity, normal stresses, and structure of fiber suspensions
[94, 96, 97]. They also examined fiber fracture in linear flow fields [95]. The main
disadvantage of this method is the computational cost. For fibers of moderate aspect
ratio, many spheres are required to describe a suspension in the semi-dilute regime.
The model requires that one solve a 6N x 6N linear system of equations where N
is the number of spheres in a fiber, as well as satisfy a set of constraint equations at
every time step.

Ross and Klingenberg [71] constructed a simulation model where each fiber is
represented by N rigid prolate spheroids connected end-to-end in order to repre-
sent fibers of larger aspect ratios. The prolate spheroids are connected by ball and
socket joints, which allow for bending and twisting. This hinge constraint replaces
Yamamoto and Matsuoka’s friction constraint, and the force necessary to hold fiber
segments together is calculated directly. Hydrodynamic interactions were neglected,
and a short-range repulsive force was employed to prevent spheroids from overlapping
significantly. The model correctly predicted single fiber dynamics, including flexible
orbits like those seen experimentally [31, 32, 89], and orbit drift due to fiber flexibility
[80]. They were also able to calculate the relative viscosity of fiber suspensions, which
compared reasonably well with experimental data. A disadvantage of this approach
is the difficulty of finding interfiber separations among spheroids (which requires an
iterative method).

In order to simplify the calculation of interfiber separations, Schmid et al. [75]
modelled flexible fibers as chains of circular cylinders with hemispherical end-caps
connected by ball and socket joints. The fibers interact with mechanical contacts via

short-range repulsive forces as well as static friction forces. The inclusion of friction
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forces, flexibility, and deformed equilibrium shape—in the absence of attractive forces
between fibers—resulted in the formation of heterogeneous structures (i.e., flocs).

The work presented in this thesis is an extension of the model of Schmid et
al., in which flexible fibers are modelled as linked rigid bodies. We investigate the
effects of fiber characteristics such as flexibility, equilibrium shape, and mechanical
interactions on the structure of semi-dilute fiber suspensions. The simulation results
illustrate the parameters that are important for predicting flocculation behavior and
the rheological properties (i.e., stress and viscosity) of fiber suspensions. The model
is also used to examine floc break-up in various linear flow fields, as well as the tensile

strength of planar fiber networks.
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Chapter 2

Simulation method

We have developed a particle-level simulation technique to model systems of flexible
fibers. The model incorporates realistic fiber features such as deformed equilibrium
shapes, fiber flexibility, and mechanical contacts (e.g., friction). Each fiber is modelled
as a series of Ny linked rigid cylinders, with hemispherical end-caps connected by
ball and socket joints. Figure 2.1 illustrates the segments of a fiber, where the center-
of-mass of each segment ¢ is represented by r;, and the orientation vector is p;.
Fiber joints are numbered starting with a virtual joint at the free end of the first
segment. Each segment has a length 2¢ measured with respect to the center of the
hemisphere end-caps, and a diameter of 2b which results in a fiber segment aspect

ratio of r,, = ¢/b. The overall fiber aspect ratio is r, = L/2b where L = 2¢{N,.

2.1 Equations of motion

The motion of fibers is described by Newton’s equations of motion [Egs. (1.29)-(1.30)].
Particle inertia is neglected which simplifies the equations of motion to simple force
and torque balances on each segment ¢ of a fiber. The forces that act on a fiber

segment 7 include hydrodynamic forces (F}*?), external force fields (F), mechanical
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joint i joint i+1

Figure 2.1: Model fiber made up of N rigid sphero-cylinders connected by ball and
socket joints.
contact forces with segments j (F§5"), and forces at each joint that keep the fiber at

a constant length (X;),

N¢,
thd + ]ZT‘eXt + Z ]Z_“COn + Xi+1 - Xz — 0, (21)
J

where N¢, is the number of contacts on fiber segment 7. The torque balance on fiber
segment ¢ includes similar contributions with the addition of a restoring torque at

each joint (Y;),
T 4 7ot Z (G x F] 4 fpy x [Xia + Xi] + Yo — Y, =0, (22)

where T is the hydrodynamic torque and TS is an external moment exerted on
the suspension. The vector G;; is the vector from the segment center to the point of
contact with segment 7,

Gij

Dl

Gij = sijpi +
where s;; is the distance from segment center ¢ to the point of contact with segment

J directed along the segment axis with respect to direction of p;; g;; is the minimum

centerline separation distance between fiber segments; and n;; is the normal vector



32

g l/_@(i J i+1

Figure 2.2: Forces and torques acting on fiber segment ¢ in contact with segmentj.

at the point of minimum separation directed for segment ¢ to j. Fig. 2.2 illustrates

the forces and torques on segment 1.

2.2 Hydrodynamic forces and torques

Hydrodynamic interactions are neglected based on simulations performed by Sun-
dararajakumar and Koch, and Harlen et al. [35, 84] as explained in Section 1.3.3.
The hydrodynamic drag force and torque are approximated with the expressions for
an isolated prolate spheroid with an equivalent aspect ratio r.. The value of r, is
chosen so that the model fiber has approximately the same period of rotation as that
measured experimentally for cylindrical fibers [89]. The ratio r./r, in general depends
weakly on the fiber aspect ratio [73], and we choose the average value r./r, = 0.7
for our simulations. The expressions for the hydrodynamic force and torque on each

fiber segment are [49]

hyd
Fi

= 67T770€Ai . (Ufo — I',L) y (23)

)

™ — &, 0P [Ci (2 —w;) + H;,:E®|, (2.4)
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where 7, is the suspending fluid viscosity, r; is the segment translational velocity, and
w; is the segment angular velocity. The hydrodynamic resistance tensors A;, C;, and

H; are

A = Y%+ (XYY pips,
C

B

= Y95+ (XC - YC) PiPi;

;z
Il

—Y"e-pp;.

where € is the alternating unit tensor. The scalar resistance functions X4, Y4, X¢,

Y9 and Y depend only on the segment eccentricity, e = (1 — 1/r2)"2, and are
given by
XA = S [-2e+ (1+AD] (2.5)
YA = ?e?’ [2e + (3¢* — 1)D]_1 :
XC = ge?’(l —e”) [2e — (1 - 62)Dr1 :
Ye = %63(2 —e?) [—2e+ (1+ eg)Drl :

Yo = §e5 [~2¢ + (1 +€*)D] ",

in which D =1In(1+4¢/1 —e).

2.3 External forces

The external forces and torques (F$* and T$") are due to any external fields such
as gravity, electric fields, magnetic fields, etc. For the work reported here, the fibers
are assumed to be neutrally buoyant and no other external fields are applied (i.e.,

Fot = Tt = 0).
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2.4 Contact forces

Fibers experience mechanical contacts with other fibers in the suspension. The force

that results from each contact is decomposed into two components,

Fi" = F) + Fie (2.6)

ij

where F}; is the force in the normal direction of the contact and F{; is the frictional
force in the plane of the contact. The friction force will be describe in more detail in
Section 2.5.2.

The purely repulsive normal force exerted on segment ¢ by segment k is mod-
elled

Fi\; = —6mn,lF exp[—ah;j|n;;, (2.7)

where the separation between the surfaces of segments 7 and j is h;;, I is the magni-
tude of the normal force, and a is related to the decay distance of the normal force.
The simulations presented here use the values F' = 150b% and a = 20/b, where % is
the ambient deformation rate.

To find the minimum separation distance between spherocylinder segments
(i.e., circular cylinders with hemispherical end-caps), we must consider three possi-
ble scenarios: side-side interactions, end-side interactions, and end-end interactions.
Fig 2.3 illustrates these types of interactions.

The separation distance is found by first calculating the minimum separation
between two lines that lie along the axes of the two fiber segments of interest. Consider
two segments ¢ and j in which the separation between the lines through the axes

relative to arbitrary points on the segment axes is

/ !/

g(sij7 Sji) = ‘rj + SQZ-PJ - = ngpi ) (2.8)
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(b)

Figure 2.3: Three possible scenarios for interactions between fiber segments ¢ and 7,
(a) side-side, (b) end-side, or (c) end-end interactions.
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where s;; and s; are the distances along the axes from the center of the segments in
the directions p; and pj, respectively. The minimum distance between these lines is

found by solving the system of equations,

dg

— 2.
dg

_ 2.1
Ds’ 0, (2.10)

ji
for s;; and s;. The values for sj; and s; which result in the minimum separation

between the lines are

[(ri —1;)  ps] (Pi - Pj) — (ri —1;) - Pi

s, = sy = : (2.11)
! ! 1— (pi-p))°
1 —(pi-pj)

Once s;; and sj; are known, the type of interaction is evaluated. If both |s;;|
and |sj;| are less than the fiber half length ¢, then a side-side interaction occurs
[Fig. 2.3(a)]. An end-side interaction occurs, for example, when a hemispherical end
of segment 7 interacts with the side of segment j as in Fig. 2.3(b), corresponding to
|sij| > ¢ and |s;;| < ¢. The minimum separation is now the minimum distance from
the end of fiber 7 to the axis of segment j, and is found by setting s;; = £¢ and
s;i = pj - (r;£{p; —r;), where the sign depends on which end of the fiber is involved.
When both |s;;| > ¢ and |s;;| > ¢ as determined by Egs. (2.11) and (2.12), an end-end
interaction occurs as shown in Fig. 2.3(c). The positions on the segment axes where
the minimum separation is measured becomes s;; = £f and sj; = £{. Table 2.1
summarizes the nine possible interaction scenarios and how to evaluate s;; and s;.

Once the proper values of s;; and s;; are found, the separation distance g;;

between fiber segment axes is calculated via

Y9ij = ’rj + 85iPj — T — Sijpi’ ) (2.13)
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Table 2.1: Evaluation of s;; and s;; for interacting segments ¢ and j by side-side,
end-side, or end-end interactions based on the original values found with Egs. (2.11)-
(2.12).

Original Result of Type Sij 5j;

Eqgs. (2.11)-(2.12)

sij| <l Isyu] </ | side-side Eq. (2.11) Eq. (2.12)

sijl <l s; >{ | end-side | p; - (r; + {p; — 1;) /

sijl <l s; < —C] end-side | p; - (r; — {p; — 1;) —/

5i; > L |sj| <L | end-side / p; - (ri+/p;, —r;)
5ij < =L |s;| <! | end-side —/ p; - (r; —(p; —r;)
5i; > 1 sj; > ¢ | end-end I4 I

Sij > I4 S < —/{ | end-end 14 —0
sij < — s > | end-end —7 I4
sij < =l s < —{ ] end-end —0 —0

and the surface separation is simply h;; = g;; — 2b. The normal unit vector between

segments at the point of minimum separation directed from ¢ to j is

_ T+ 8P —Ti — Si5Pi

n;;
J
Gij

(2.14)

If hij < hyim Where hyip, is the maximum interaction distance, then the fiber segments
interact with a normal force given by Eq. (2.7). In addition, if h;; < hey where hey
is the contact cutoff distance (heyy < him), then the fiber segments are said to be in
contact and interact with a friction force in the plane of contact as well as the normal
force.

Fibers that experience contacts are sorted into groups, in order to facilitate the
solution of the equations of motion (described below). As interactions are encoun-
tered, the sorting algorithm groups the fibers based on four criteria: (1) if neither
fiber is contained in a group yet, a new group is formed; (2) if one of the fibers has
been previously sorted into a group, the new interacting fiber is added; (3) if both
fibers have been previously counted in different groups, both groups are combined
into the group containing the fiber with the lower index; and (4) if both fibers are

already in the same group, the number of fibers in the group is not affected and
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Figure 2.4: The inextensibility constraint causes the end-points of adjacent fibers to
coincide.

an additional contact is counted. Contacts that occur at hinges are counted as one
contact in the sorting algorithm, in which the lower indexed segment is chosen as the

contacting body.

2.5 Constraint forces

2.5.1 Inextensibility constraint

A force X; is applied at each joint to keep the fiber at a constant length L. The
value of X, is found by applying a holonomic constraint, which is only a function of

positions and orientations of the connected segments. The constraint for joint i+ 1 is
\I’i(r, p) =r;+ fpz — (riJrl — gpz#l) = 0, (215)

and is illustrated in Fig. 2.4. The constraint demands that the end points of fiber
segments that share a joint coincide. The force applied at the virtual joint is always

X1:0.
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2.5.2 Friction constraint

Segments ¢ and j that are in contact (h;; < hey) may experience a friction force at

the contact. A constraint that allows for no relative motion between segments ¢ and

j in the plane of the contact is needed to find the friction force Ff;ic,

1

EZ‘](I', P, I", p, Ffric) = Auij . e?j = O, (216)

fric
F35¢ - ny;

where the orthonormal unit vectors e}; and e7; define the plane of contact as shown

in Fig. 2.5,
ol _ 10— mimil-e (2.17)
Y [6 — nyny] - & '
1
2 — X (2.18)
K }nij X eilj‘

The velocity difference Au;; between fibers ¢ and j at the contact point is,

d 9ij Gij
Substituting p; = w; x p; and n;; = w; X n;; yields

Combining the friction constraint with the equations of motion [Egs. (2.1)-
(2.2)] and the inextensibility constraint [Eq. (2.15)] allows for the solution of the
friction forces ngc for all contacting segments. The friction forces are subjected to a

Coulombic friction law,

[F| < p*®|Fy| = contact remains intact

, _ Al
> M FY| = FiC = | F |Aul-]- ; (2.21)
ij
where ;5% and X" are the static and kinetic coefficients of friction, respectively.
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plane of
contact

W

Figure 2.5: The frictional force at a contact is constrained to a plane perpendicular
to the normal between the segment centers at the contact point, n;;. The plane of
contact contains the orthogonal unit vectors, eilj and efj.

2.6 Restoring torque

In the model, restoring torques Y; are prescribed at the joints to resist deformation.
Like the inextensibility constraint forces, the restoring torque at the first joint is
Y, = 0 since it is a virtual joint. The restoring torque in joint ¢ is decomposed into
bending and twisting contributions, Y; = Y? + Y. The individual components Y?
and Y! are approximated from beam theory for small deformations. Each moment
is proportional to the difference between the angle at the joint formed by connected

segments and its equilibrium value,

Y = —rp (0; — 07%) €, (2.22)

Y! =~k (7 — ¢59) e (2.23)

2 77

where 6; and ¢; are the bending and twisting angles and 6% and ¢;* are the equilibrium
values (measured in radians throughout this document except where noted); e? and e!
are the unit vectors in the directions of the bending and twisting torques; and k; and
k¢ are the bending and twisting constants. The bending constant is approximated as
that of an elastic cylinder subject to small deformations, 2¢x, = EyI, where Ey is

the Young’s modulus of the fiber and [ is the area moment of the fiber cross-section
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X,

R ¢
equilibrium
i frame

Figure 2.6: Relationship between the three types of coordinate frames related to
segment 4: inertial frame, body ¢ frame, and equilibrium body ¢ frame.

(see Appendix B for the derivation of k;). The twisting constant is approximated
with /Ky = 0.67, which is equivalent to an elastic cylinder with a Poisson’s ratio of

0.5.

2.6.1 Frames of reference

Three frames of reference are considered in order to describe the orientation of a
fiber segment: the inertial (laboratory) frame, the segment ¢ body frame, and the
equilibrium ¢ body frame. The inertial frame is a frame of reference that remains fixed
in space and time. The equations of motion are evolved with respect to the inertial
frame. The body and equilibrium frame coordinate systems evolve with the dynamics
of the segment to which they are attached. Fig. 2.6 illustrates the relationship between

the three frames of reference.
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Each segment ¢ has a body coordinate frame associated with it which is defined

with respect to the orientation vector p;, and two arbitrary unit vectors X; and y;
that form an orthonormal coordinate system (X;,y;, p;). This frame remains fixed
to segment ¢ as it translates with velocity r; and rotates with angular velocity w;.
Once the body frame is chosen, the coordinates of an arbitrary vector w; in the
inertial frame can be transformed into the body frame coordinates, w’, by a linear
transformation of the form w;, = R,; - w;. The rotation matrix R; is orthogonal

(R;' = ’T\’,j) and the components are the direction cosines:

%8, %8, % -6
Ri= Yi-€: Yi-€ Yi-€: . (224)
p:ci pyi pzi

The inertial frame is in Cartesian coordinates, which makes the base vectors e, =
(1,0,0), &, = (0,1,0), and e, = (0,0, 1).

The equilibrium body 7 frame (X;%,y;%, p;") is fixed to the preceding segment
i — 1 (i.e., the equilibrium 7 frame translates and rotates with segment ¢ — 1). The
equilibrium frame is compared to the body frame of segment 7 to determine the change
in configuration of a segment from equilibrium—the body frame and equilibrium body
frame coincide at equilibrium (Y; = 0). The coordinates of the equilibrium body
frame are related to the coordinates in the body frame of segment ¢ — 1 by the linear
transformation &9 = RS- &Y. The equilibrium rotation matrix R is constructed
by two rotations of the i — 1 body frame as seen in Fig. 2.7: (1) rotation (twist) by

an angle ¢;* around p;_; into the primed frame, and (2) rotation (bend) by an angle

6;* about y' to form the equilibrium frame.

Each joint of a fiber has two equilibrium angles, 6% and ¢, associated with
it that describe the shape of the fiber when no forces or torques are acting on it.

By adjusting these two parameters, the fiber equilibrium shape may be straight, U-
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Figure 2.7: Construction of the equilibrium rotation matrix is accomplished by two
rotations: (1) ¢;* about p;_; and (2) 6;* about y’.

shaped, helical, or of an arbitrary configuration at equilibrium. For example, if 6;% is
constant at every joint and ¢;* = 0, the fiber will assume a U-shape; if 6 and ¢;*
are both non-zero constants at every joint, the fiber has a helical shape. Examples
of different fiber equilibrium shapes for different values of 6;* and ¢;* are found in

Fig. 2.8.

2.6.2 Restoring torques in terms of bending and twisting

The bending at each joint is defined by relating the orientation vectors of the equi-
librium ¢ frame p;?, and the body i frame p;. The difference between the bending

angle 6; and its equilibrium value 6 is
0; — 059 = cos ! (p; - piY) . (2.25)

The vector p;? is transformed from the equilibrium 7 frame coordinates into the i — 1

body frame, and then transformed into inertial coordinates,

pit =R, - (R pff (2.26)

i leq i)’
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Figure 2.8: The effect of 6;* and ¢;* (measured in degrees) on equilibrium shape of
symmetric fibers (6" = 037 = ... =0y and ¢3" = ¢35 = ... = ¢ ).
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where pio[leq q= (0,0,1). The direction of the bending torque is perpendicular to both
p; and p;*,
b PiXpi (2.27)
" P x P

The amount of twisting may be found in a similar fashion. A vector perpendic-
ular to p; is chosen to determine the amount of twisting at a joint. The body frame
direction, y; is compared to its counterpart, ¥, in the equilibrium frame. This vector

is found in a manner analogous to that used to obtain p;?,
Vi =R (R 9 (2.28)

The angle between y; and y;® cannot be compared directly, but rather the projection
of the perpendicular components along the direction ¢; = (r; —r;—1)/(|r; — r;-1]) are
compared. Therefore, the amount of twist at the i*" joint is the angle between the
vectors yi- and y&9 -,

¢ — @54 = cos™? (jff cyil L) , (2.29)

. ceq L
where yi- and ;% are defined as

AL (6 - Cicz) - Vi
Yi = ~ | 230
(6~ ce) -9 (230
AéqL _ (6 - Cicl) ) y?q (2 31)
' (6 = cici) - 37"
The direction of the twisting torque is normal to these two projections,
oL x yodt
o= Y Y (2.32)
g <yt

The overall restoring torque is the sum of the bending and twisting contribu-
tions,

Y=~ [(6; — 6;%) e} + 0.67 (6 — %) el] . (2.33)

K3 K3
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The amount of elastic energy stored by a fiber can be calculated by integrating the
magnitude of Eq. (2.33) with respect to the change in the bending and twisting angles,
and summing the contribution over the entire fiber. This results in the elastic energy

E°5s of a single fiber,

Nseg

B = 2 [(6,— 05+ 0.67(05 — 7] 23

=2
2.6.3 Anisotropic bending

Thus far, we have assumed that the model fibers bend isotropically (i.e., no prefer-
ential bending direction). Natural fibers do not typically have circular cross sections,
and thus have preferential directions of deformation. An SEM image of softwood
fibers is presented in Fig. 2.9. The wood fibers are ribbon-like and tend to bend more
easily in the direction with the shortest dimension.

Anisotropic bending may be modelled by defining two orthogonal bending di-
rections with bending constants (kp)hard = EyIhara/2¢ and (Kp)easy = Eyleasy/20 <
(Kb)hara, as illustrated in Fig 2.10. The bending directions are set to the equilib-

q

rium body frame vectors, x{* and y;® for the hard and easy directions, respec-

tively. The contributions to the bending component of the restoring torque Y? =

(Y?)hard + (Yg)easy are

(Y)hara = (Kp)nard (A0 ) naraX; (2.35)

(Y?)easy = (Kb)easy<A9i>easyy?q- (2.36)

The angle differences relative to equilibrium are (Af;)nara and(A6;)easy,

eq . * .
(Ab)hara = tan™ (%), (2.37)

eqc /\.
(0 =t (B 2.38)
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Figure 2.9: SEM image of a softwood pulp fibers

where p;? is defined by Eq. (2.26).

A limiting case of interest is when the fiber becomes infinitely stiff in one
direction, (kp)para — 00. In this case, the joint may be modelled as a pin joint,
resulting in an additional constraint that restricts bending at a joint to that about a

preferred axis, ;. The restoring torque at a joint is
Y=Y +Y! 4V e, (2.39)

where Y;*" is the magnitude constraint torque directed along e?", that forces a fiber
to only bend about 1¥;. The direction of the pin joint can be arbitrarily chosen, and
evolves with body ¢ frame. For the work reported here, the direction of the hinge

was chosen to coincide with one of the body frame coordinate vectors, ¥ = y;. The
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z

Figure 2.10: Fibers with a non-circular cross section have a preferred bending direc-
tion, for example, with respect to the y-axis.

direction of the constraint torque is

’l9i X Pi
e — Ui X Pl (2.40)
|9 X Pit1]

The value of Y*" is found by including the constraint equation,
9, - Pig1 = cos b, (2.41)

where ¢’ is a constant. This equation constrains the relative motion of adjoining

segments to a plane, perpendicular to 19;.

2.7 Scaling of the equations of motion

The equations of motion are scaled in order to reduce the number of parameters
in the system. Distance is scaled with the fiber diameter b, and the time is made
dimensionless with the inverse of the shear rate, ¥~!. The forces are scaled with
the quantity 67n,0b% and the torques with 87n,¢35. The dimensionless quantities of

interest are (denoted with superscripted asterisks):

FN* _ Fi\l fricxs _ Fﬁric * X
t T 6mulby? i T 6mulby? T 6rulby?
* Y, x _ Gy
Yi T 8mwul3y0 Gij b0
o ' (2.42)
i by i by
wh =% QX" = —Q;o

% PR 7 y o
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The terms above are substituted into Egs. (2.1)-(2.2) to obtain the dimensionless fiber

segment translational velocity 7 and angular velocity w?,

o,
i o= a + A7 D FIC X, X (2.43)
|
[ 5 Yo 3
* * —1 o~ fric* ~ * *
wi = bi+Ci - szij'Fm +Hpi'[Xz’+l+Xz‘] , o (244)
Ps ] s

* * :
where a’ and b} are given by

NRz‘
a* _ Uoo*+A—1 X FN*
T A 7 g
J
yH Rl

3 ~
* oo oo -1 § * N * *
Ps 4

The terms éfj and p;, are the matrix representations of cross-products. For example,

p is defined
0 —D:z py
ﬁ = Dz 0 — Pz , (245)
—DPy Dz 0

and thus p X u = p - u, where u is an arbitrary vector.
For the majority of this work, the ambient flow field is simple shear flow in the x

direction with the velocity gradient in the 2z direction. The dimensionless expressions

for U*, Q°* and E** are

U>* = (r;,0,0),

zZi)

QX = -V x U =(0,0.5,0),

N | —

0.5

0 0.
EX = - [VUX + (VU] = 0 0
0 0

DO | —

Two dimensionless parameters result from the given scaling of the equations of

motion: the aspect ratio of a segment, r,_, and the dimensionless bending constant,
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k;. The dimensionless bending constant is defined

Kb

— 2.4
87N Yl3 (2.46)

*
Ky

or equivalently defined by substituting x, = Ey /2,

Ni [ EyI
RZ:ﬂ{ v ] (2.47)

™ [Nyl
——
Seﬁ

The term in brackets is called the effective stiffness and given the symbol S°*. The
effective stiffness characterizes the ratio of the bending moment within the fiber to
the viscous torque exerted by the fluid on the fiber. Throughout this work, S will

be used to describe the relative flexibility of fibers in a suspension.

2.8 Generalized coordinates: Euler parameters

The dynamics of the fiber segments is found by integrating the equations of motion to
obtain the positions and orientations as a function of time. However, the expression
for the angular velocity w; [Eq. (2.44)] is not integrable, and therefore, it must be
transformed into time derivatives of the generalized coordinates for the orientation
of the fiber segment. One option is to use Euler angles, but this can lead to special
cases in which the transformation to the time derivatives of the Euler angles from w?
has a singular result [92]. An alternative set of generalized coordinates that avoids

this problem are Fuler parameters.
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Figure 2.11: The vector w in the inertial frame (&,,¢€,,€,) is transformed to w’ in
the body frame (X;,y;,2;) by a rotation of the inertial frame by an angle y about the
vector u, which has the same coordinates in both frames.

2.8.1 Relation of Euler parameters to the body rotation ma-
trix

Euler’s theorem states that two arbitrary orthonormal reference frames with a com-
mon origin share at least one unit vector u that has the same coordinates in each
reference frame [36, 92]. This implies that the two frames can be made to coincide by
rotating one of the frames about the vector u by an angle y, as shown in Fig. 2.11.
Consider an arbitrary vector w with coordinates in the inertial frame defined
by the base vectors (€, €,,€.). We want to know the linear transformation of w into

body frame coordinates

w =R w, (2.48)

in which the body frame base vectors (X;,¥;,2;) have been translated to share a
common origin with the inertial frame. The end of the vectors w and w’ both lie on
a circle with the center defined by the vector u. We define two additional vectors a

and b as shown in Fig 2.11 to help us relate w and w’ as

w=w +a+b. (2.49)
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The vectors a and b are defined as

a = (I—cosx)ux(uxw|, (2.50)

b = siny[uxw]. (2.51)
We make use of two trigonometric identities,

1—cosy = 2sin?(x/2),

siny = 2sin(x/2)cos(x/2),
and the values of a and b above, to substitute into Eq. (2.49) to obtain
w =w + 2{usin(x/2) x [usin(x/2) x W]} + 2cos(x/2) [usin(x/2) x w'] (2.52)
We introduce the new quantities

Qo = cos(x/2),

a = usin(y/2),

where the coordinates of q are g1, g2, and ¢3, which have the same values in either
reference frame because of the properties of u. These four coordinates (qo, 1, g2, q3)
are called Fuler parameters (also called Caley-Klein parameters), and can be used to
represent the orientation of a rigid body in space. The definition of (g, q) leads to
the identity,

G +di + a3 +q5 =1 (2.53)

Substitution of ¢o and q into Eq. (2.52) results in a relation between the vectors w
and w' of the form
w = [ +2qq + 2¢0q] W', (2.54)

N S

R'
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where q is the matrix representation of a cross-product vector,

0 —qg3 @
61 = qs 0 —(q1 . (255)
—¢2 q 0

The term in brackets in Eq. (2.54) is simply the transpose of the body rotation

matrix which was defined is Section 2.6.1. In terms of Euler parameters, R becomes

2(@+q¢D) -1 2(qge+ ) 2(q1g3 — q0q2)
R=| 2(g1g2—q0q3) 2(@F+a3)—1 2(qq5+ qq) |, (2.56)
2(1q3 + 0q2) 2(q2q3 — q0q1) 2(3+¢3)—1

or if the body rotation matrix is known initially, the Euler parameters are found by

1
qo = 5\/1+R11+R22+R337

‘ :1 Raz — Raz
" 2VI+ Ryt Ra + Raz
¢ :1 Rz — Ras
’ 21+ Ry + Raz + Raz’
1 Ris—R
o 12 21 (2.57)

25\/1%—7311-1—7322—1—7333'

2.8.2 Relation between Euler parameters and the angular

velocity

The relation between (qo, q) and the angular velocity is derived using Poisson’s equa-
tions [92]. Poisson’s equations relate the angular velocity of a body frame coordinate

system to the rotation matrix by,
W =-R-R, (2.58)

where R is the time derivative of the body rotation matrix and W' is the matrix
representation of the cross-product vector of w in body frame coordinates. Substi-

tuting Eq. (2.56) into Poisson’s equation relates the angular velocity to the Euler
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parameters,

W' = —2[(a- @) + dod — 0d] (2:59)
or as a vector,

w'=-2[q- 4+ doa — qod] - (2.60)
Eq. (2.60) shows that the angular velocity in body frame coordinates is a linear com-
bination of the Euler parameters and their time derivatives. This can be represented

in matrix notation as,

do
-1 qo a3 —q2 i
w' =2 —q2 —q3 qo q1 o ) (2-61)
—qs3 42 —q1 4o .
N ~ -\ 43
r

where the matrix I' is orthogonal. In general, we will refer to the Euler parameters

of fiber segment i as q; = (qo, q);, and the inverse of Eq. (2.61) is therefore
1
Q= 51‘T W (2.62)

The time derivatives of the Euler parameters can be expressed in terms of the
inertial frame coordinates of the angular velocity w, by the transformation w’ = R-w.

Substitution into Eq. (2.62) yields

1

=5 Rw= I w, (2.63)

1
2
where I'is a 3 x 4 orthogonal matrix, and is expressed in terms of Euler parameters

as
-0 9 —4g3 q2

—q3 —Q2 Uil do
The equation of motion for the orientation of a body can be expressed in terms

of Euler parameters, q;. Combining Eqs. (2.44) and (2.63) results in,
Ne,

o 3 ~ .
Sk * -1 * fricx
q = Ii-<b;+C - E Gij -Fi
J

2
47“ps
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3 = * k
+ —pi [Xi T+ Xi]] } + A\iq;. (2.65)
4rps

where qf = q;/7 is the dimensionless time derivative of the Euler parameters. The
term \; is an unknown Lagrange multiplier that is found by including the normaliza-

tion constraint for the Euler parameters, q; - q; = 1.

2.9 Solution methods

The dynamics of the flexible fibers in our model are determined by solving the equa-
tions of motion coupled with the constraint equations given previously. This forms
a system of index-2 differential-algebraic equations (DAEs) to solve for the unknown
fiber segment positions r*, Euler parameters q, inextensibility constraint forces X*,
friction forces Ffi* and Euler parameter constraint constants A, as a function of

time. The system of DAESs is summarized

P — F(r*, q, X5, Fe) = 0, (2.66)
Q" — G(r*,q, X* F"* X)) = 0, (2.67)
v*(r*,q) = 0, (2.68)

A(q) = 0, (2.69)
E*(r*, q, 7, q", FH) = 0, (2.70)
©(q) = 0, (2.71)

where each coordinate and force vector represents all of the fiber segments in the

system of Ny, fibers,

* *
r d1 X3
* *
ry q2 B X3

* *
' Ny, Noeg ANgip Nseg XNﬁb(Nseg—l)
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fri
Flrlc* )\1
fricx
Ffric* o F2 A= >\2
- . ) - . )
frick
FNC ANﬁszcg

in which N¢ is the total number of contacts in the system. The components of F

and G come from Eqgs. (2.43) and (2.65). For segment i, the functions are

1 )

Ne,
Fi = a+A7" ZFg‘iC*‘i'X:H - X
J

N¢.
o 3 <~ : 3
o . * -1 | _“ *  ppfricx Y o= * * ~.
g =1 b; + C; 47,38 Ej :G’j Fij + ir,. Pi [Xi+1 + X7] + Aidi-

The dimensionless constraint for inextensibility at a joint ¥}, the Euler normalization
constraint for each segment A;, the friction constraint for each contact &7;, and the

anisotropic bending constraint at a pin joint ©; (only needed if fibers bend anisotrop-

ically via pin joints) are

v = 1+ (r¢+1 rpspz-l—l)a

A = qi-q;i—1,

* 1

Auj; - e;;

—k _ * o 2

B = Auj; - ej;
fric*

FZ-]- n;;

The complete system of DAEs [Eqs. (2.66)-(2.71)] consists of 7Ng,Neeg €qua-
tions of motion (first order, ordinary differential equations), 3Ngy,(Nsez — 1) alge-
braic equations for the inextensible joints, Ng, N, algebraic equations for the Euler
parameter normalization constraint, 3N¢ equations for the friction constraint, and
3 Niib(Nseg — 1) equations if the fibers bend anisotropically with pin joints. The numer-

ical solution to Eqs. (2.66)-(2.71) can be accomplished using a variety of techniques
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including: finite difference (backward or forward) substitution for the derivatives to
yield non-linear algebraic equations in the unknown generalized coordinates and con-
straint forces [15], direct numerical integration [36, 92|, and constraint stabilization

[9, 36, 92]. Direct integration will be investigated in more detail below.

2.9.1 Direct integration

One method to numerically solve these equations is called direct integration [36, 92].
Direct integration involves the simultaneous solution of the translational velocities 1,
angular velocities w, and the constraint forces (X*, Fi®*) (assuming an isotropically
bending fiber). Then, w* is transformed into q*, and the time derivatives of the
positions and Euler parameters of the fiber segments are numerically integrated. In
this way, the Euler parameter normalization constraints (A) are eliminated, and the
Euler parameters can be renormalized after the integration.

We must first express the constraint equations in terms of r* and w®*. This
is done by taking the time derivative of the inextensibility constraint d®¥*/dt (the
friction constraint is already in this form). The values of #* and w* in the two
constraint equations are then replaced with the expressions in Egs. (2.43) and (2.44).

This yields a linear system of equations for the unknown constraint forces of the form,

Dol )-(%) o

The terms Rx, Zr, and Vx arise from the time derivative of the inextensibility

L

constraint (¥ ), and Zx, Rr, and Vy result from the friction constraint (E*). Once

(X*, Ffrie*) are known, we solve for i* and w* using Eqs. (2.43) and (2.44).
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Evaluation of the modified inextensibility constraint

The constraint that keeps a fiber at a constant length is modified by taking the time

derivative,

v, = dt [ri + Tp,Pi — (ri+l - TpsPiJrl)]
= T+ Tpsp;‘k - (I.':“+1 - Tpsp;-l)

= I —Ff + 1y, (W] X P+ Wi X P =0, (2.73)

where for any segment p; = w; x p;. The equations of motion [Eqs. (2.43)-(2.44)] are
substituted into Eq. (2.73) for ¥} and w; which makes the only unknown quantities

the constraint forces. The constraint becomes

*

Nci+1

N¢,
W— . Ffric* + W+ . Ffric* +
ik ik i+11 i+11
k l

*

aj —aj; —1p [ﬁz b} + Pit1 - b;k+1} =0,

The orientation tensors S, 7, U, W, and W™ are functions of the fiber segment

position and orientation:

3

_ —1 =2

S = A7 - mpm

3
-1 -1 ~2 ~2
Tz = AZ + Al+1 - 4YC (pl + pH_l) 9

_ 3

3
- -1 ~ x
Wik - 7 4TPSYC P ik
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Evaluation of the friction constraint

The friction constraint is already expressed in terms of velocities, thus no further
derivatives need to be taken. The relative velocity between contacts points on fiber

segments ¢ and j is
Auj; = 1} +wj x Gj; — 1] — wj x GJ,. (2.75)

Once again, Eqgs. (2.43) and (2.44) replace 1} and w; above, and the first two terms

of the friction constraint become

Eioe = (@7 el?) Xi+(Qf el?) Xy + (2.76)
T.alor * i or *
(M ol 2>-X~+<M§--eij 2> Xt +

Ng,
Z (ng el or 2) fr1c>k + Z < llor 2) Ffrlc* +
k

* * i * * ~ x * lor2

)

where the frictional orientation tensors Q, @', M, M’ J, and J' are

3
;= —A7l— G* - Dis
e ‘ Ar, Y€
3
o ATl G* D;
Ql 7 4T’p YC p?
3
_ -1 * =~
M. = A7+ E G* p
J J 4 YC Py
3
_ -1 * 1 *
Tu = A= 7G 0 G
JI . —A 4 G* C 1 *
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Anisotropic bending: Pin joint constraint

If the fiber joints are changed from ball and socket joints to pin joints, we must modify
the equations of motion for angular velocity, the constraint equations U and E*, and

add the new constraint equation ®. The angular velocity [Eq. (2.44)] is changed to

C.
3 Y~ . 3 -
wi = b+ O | ST G B (X, X
47“175 - 4ary,

7

+oYRTen, — Y.an*e?n] , (2.77)

where Y;*** is the magnitude of the dimensionless torque in the direction of e

[Eq. (2.74)] which limits the rotational motion of the connected segments to that
about 19,.

The inextensibility constraint equation is the same as Eq. (2.74) with three
additional terms,

L

(W )i = W, SV 4 TV 4 UV, (2.78)

aniso. ) i

where W, includes all of the terms from Eq. (2.40) and the tensors 82, T2, and U

are
T
an  __ Ps =~ an
Si - YC pl : e’i )
Tan _ rps (~' ~') . pan
7 - YC Pi+1 — Pi ei+17
T
an __ Ps ~ an
u: = - ycC Pit1 - €, 9.

Similarly, the friction constraint is modified to take into account the new an-
gular velocity. The first two terms of the friction constraint for contact between

segments ¢ and j are changed to

— — lor2 lor2
(‘:’ZJ)({?;' 2 — (‘:'7»]>>{ or 2 + (Q;ln : eijor ) }/;jan* + (ann . eijor ) }/iinl*

+ (qu . el'or 2) }/jan* + (M;an . el.or 2) Y;Tik (279)

J v v
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where (Z;;)7 . » is obtained from Eq. (2.76) and the vectors Q7" and M are

1 or

Q?n — G C 1 an
Q/an _ _é* X C—l . pan
i = i i €t
an  __ ~* —1 an
lan  __ 1, an
MO = GOt el

We must also include the pin joint constraint, ©;, at each joint [Eq. (2.41)].

The time derivative of ©; is

. d
o = dt*(

= U [Wi X Pip1] + [w] X 0] Pit1,

;- pirt — cost),

= [0 x pin] - (W] —wiyy),
— e (W] —wiy) = 0, (2.80)
and the angular velocity is replaced with Eq. (2.77). The constraint becomes
@: = H?'XE‘+H3'X2‘+1+H?-X?+2
+ P+ P + P

-+ (bprl — bl) . e?m

1 )

(2.81)

where the orientation vectors HY, H;, H? and scalars P?, P}, P? are

3

o _ _ Y =~ an
i = 41, Y C Pir €
Hl — i(ﬁ_ﬁ )_ez'm

1 4TpSYC 3 i+1 1 )

3

2 an
H = 41”p yC ——cPi+1- €,
P = = —(C e e
Pz'l - = [(C + C ) z+1] e?n7
P o= = (Cz—i—ll efyy) - €.
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2.9.2 Approximate method of direct integration

The numerical solution to the system of DAEs derived here involves the solution of a
linear system of 3Ng,(Nseg — 1) + 3N equations with an equal number of unknowns
[Egs. (2.66)-(2.70), assuming isotropically bending fibers]. The values of (X*, Ffric*)
are then used to find r* and w*, in which w* is transformed to the derivatives of the
Euler parameters by q* = f‘T -w*/2. Finally, the 7Ng, Ny, equations of motion are
integrated by an explicit method.

As the concentration increases in a fiber suspension, the number of contacts
increases to the point that a network is formed in which the motion of a single fiber
can then transmit a force through the entire network. This requires the solution of
a very large linear system of equations. For example, a system of Ny, = 450 fibers
with Nge = 5 that form a network with two contacts per fiber, would require nearly
1 GB of computer memory and ~ 10 operations [65] to solve the linear system
for the constraint force for one time step (assuming that an exact method such as
LU decomposition is used to solve the system). We would like to use an approximate
method to calculate the constraint forces in order to reduce the number of calculations
and amount of computer memory required.

One method to decrease the size of the system of equations is to decouple the
solution of the constraint forces X* from the friction forces F#*. We accomplish this
by assuming that the value of X for a joint remains constant over the course of one

time step. By making this assumption, the friction force can be found by using the

*

values X[ rev

| from the previous time step,

Rp - Fi —yp - Z( . X7 (2.82)

[prev]*

This simplification allows us to temporarily ignore the connectivity of the fiber and



63
consider segments as individual rigid bodies. The segments are sorted into Ng groups
that share contacts. Then, Eq. (2.82) is used to solve for the friction force of each
group of contacting segments (rather than each group of contacting fibers), which has
a total of N¢, contacts, where Ng, < Ne.

For each group, the matrix Ry has the form,

Q11 Q12 ° °  Qing,
Re=| @ & (2.89)
ONg,1 0 @Ng Ne,

where g (described below) are the interaction tensors, and the subscripts denote the
contact number. The friction force at a contact point has a direct contribution to
contact between ¢ and j, which is accounted for by the diagonal terms in Rr. The
off-diagonal terms are necessary to find the indirect contributions of the friction forces
that arise from multiple contacts on segments ¢ and j with other fiber segments.

The interaction tensors can be expressed in terms of components from Eq. (2.76).

Consider a contact between segments ¢ and j. The diagonal components of Ry are

0,j.;i» and have the form
(Jj‘j_J;i)'eilg
!
Qijji = (Jjg - sz‘T) 'ez?j : (2.84)
n;;
where we have made use of the fact that F{;** = —F***. In general, when the first

index of a vector or tensor term is larger than the second (i.e., j > i), the following

substitutions are made:

fricx frick
Fm = —Fj,
n; = n;;,
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Table 2.2: Summary of the interaction tensor for the off-diagonal components of Rg
for contact between segments ¢ and j (¢ < j) in which an indirect contact occurs with
segment m (see also Fig. 2.12).

Case Off diagonal F™¢ [ ¢ | term used for o (J or J')
Li<m Jlrics +1 T im
II: i >m Firics —1 Tim
II: j <m Fg“nf* +1 Tim
IV: j > m Fhics —1 T im

which make the vectors G;-‘j and G;i,

*

v _ 9ij
Gz’j = 85;;Pi + 711@'7

*

sz' = 5;P; — 9

If segment ¢ has an additional contact with segment m, there is an indirect con-
tribution to the friction force between ¢ and j, that leads to an off-diagonal interaction

tensor of the form
j;[m ’ eilj
Qijim = § jjm : e?j ) (2-85)
0

where ¢ = £1, which takes into account the sign of FI'* based on the indices i and

m. If m contacts segment j, the off-diagonal term is

T - €l
0

The evaluation of the off-diagonal components of varrho of Ry leads to four pos-

sible scenarios for any three-segment system. This is outlined in Fig. 2.12 and the

construction of the off-diagonal components ofg terms is summarized in Table 2.2.
The right side of Eq. 2.82 contains the geometric dependencies and the inex-

tensibility constraint forces. This results in

Tij- e
(VF—ZX- * )ij: T, -€e2

[prev] ij |
0

(2.87)
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contact im

contact i Case I : contact ij counted

before contact im
(i.e.i<m)

Case II: contact im counted
before contact ij
(i.e.i>m)

contact jm

contact ij

Case III: contact ij counted
before contact jm
(i.e.j <m)

Case I'V: contact jm counted
before contact ij
(i.e.j > m)

Figure 2.12: Scenarios for contacts among any three segments ¢, j, and m, where the
main contact of interest is between ¢ and j.
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where the term Z;; is

Iij = = (QZ ’ (errev]% + Ql ’ (errev])iJrl
+ M- (errev]% + M- (errev])jJrl (288)

+ oa-a; Gy b+ G by )

Appendix C contains an example of how to build the matrix Rp.
If the fiber joints bend anisotropically via pin joints, we treat the constraint

torques Y** in a manner similar to that for X}, in that we use the values from the

79

previous time step. Thus, the right side of the friction constraint equation [(Z;;)aniso.|

for fibers with pin joints is

(T =Ty = QY™ — QY

MEYE MY (2.89)

Once all of the friction forces are known, we can update the inextensibility
constraint forces as if the fibers were isolated bodies. For each fiber, a linear system

of equations of the form
Rx - X' = Vx — Zp - Flie, (2.90)

is solved. The term Rx has a band diagonal structure that contains five terms
immediately to the left (below) and right (above) the main diagonal. Using the

orientation matrices defined in Eq. (2.74), Rx for a single fiber with Ny, segments is

[T, U, 0...

S, T, U, O...

0 S 7T U 0...
. P . : (2.91)

...0 SNseg—l TN 1

seg
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If the fibers have pin joints to model anisotropic bending, Eq. (2.90) has a

different form on the left hand side,

X* .
(Rx)aniso. - ( yans ) =Vx— Zp- anc*7 (2.92)

in which the matrix (Rx)aniso. has the form

77 Up O... T o ui™ o...
S T2 U 0... s3* T ui* o...
0 S3 T3 Us 0... 0 s§ rg®  ug? 0...

an an
S0 Sneeg-1 T Npeg—1 0 SNg—1 TNeeg—1

(Rx) = 1 2 1 2
aniso Hl HZ 0., Pl P2 0
0 1 2 0 1 2
H) mL mEZ 0. PY PL P2 0.
0 1 2 0 1 2
o my mi H2 0.. o Py Pl P2 0
0 1 0 2
0 MR M, G0 PR PRt

Each term on the right side of Eq.(2.90) has the form

(VX —Zyp- Ffric*)z' = - a;‘ - a?ll —Tp [152 ) b: + ﬁiﬂ ’ b;'kJrl} (2'93)

Nci+1

Ne,
k l
+  [bit1 — by 'e?n> ; (2.94)

where e equals zero for isotropic bending fibers.

2.10 The computational algorithm

Simulations of fiber suspensions consists of three basic tasks: (1) initialization, (2)
constraint evaluation and integration, and (3) post-processing. Initialization consists
of constructing the initial configuration and choosing run parameters. The constraint

evaluation and integration involves numerically solving for the constraint forces, po-
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sitions, and orientations of the fiber for a specified strain (vg,). Finally, the stored

data is post-processed to calculate suspension averaged quantities.

2.10.1 Initialization

A fiber suspension is simulated by solving for the motion of the fibers in a sample
volume of fluid, the size of which is chosen based on the available computer memory,
desired computational time, and the length scale of particle interactions. In order
to avoid the surface effects in the sample volume, periodic boundary conditions are
employed [1]. The sample volume, called the central simulation cell, can be chosen
as any semi-regular space-filling polyhedra (i.e., cube, octahedron). The central cell
is replicated throughout space forming a periodic lattice of images, and the fibers in
the replicated cells move in the same way as the central cell. If a fiber leaves one face
of the cell, its periodic image enters through the opposite face. In these simulations,
a cubic simulation cell is used in which the side lengths are proportional to the length
of the fiber, (L. The parameter ( is a scaling factor that must be large enough so
that a fiber cannot interact with itself. For the simulations reported here 1.5 < { < 4.

A concentration of the fiber suspension is chosen in terms of the dimensionless
concentration, nL3, or the volume fraction, ®. The number of fibers Ng, in the
simulation cell is

4¢ 37"%

Ny, = C(nL?) = Tcp. (2.95)

The centers-of-mass of Ngy, fibers with N, segments and a predetermined equilib-
rium shape (6;* and ¢{?) are randomly placed in the simulation cell with a random
orientation, such that no fiber segments overlap (i.e., hj; > 2). After the initial con-
figuration of fibers is chosen, additional simulations parameters are set. Table 2.3

summarizes the input parameters for a simulation.
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Table 2.3: Input parameter for fiber simulations

Parameter | Description
Ngy, number of fibers in the system
Ngeg number of segments per fiber
T'p, aspect ratio of a segment, 7,. = 1,/Neeg
Ky, dimensionless bending constant, x; = Ny, ST /m
5t static coefficient of friction
pn kinetic coefficient of friction
nE contact cutoff distance, usually A% , = 0.33
5 normal force interaction distance, usually hj = 2h7 ,
P eighs neighbor list cutoff distance, hy g, & 7p,
Teut number of time steps between neighbor list updates
A~ dimensionless time step
Yin total strain for the simulation run

2.10.2 Constraint evaluation and integration

For each time step, the quantities that only depend on positions and orientations,
a; and b; from Eqs. (2.43)-(2.44), are first calculated. This consists of finding the

surface to surface separation distance for each fiber segment pair and calculating the

N
ij

normal forces, F.*  as described in Section 2.4. The process of finding separations
can be sped up by using neighbor lists [1]. Instead of seeking the separation distance
for every fiber segment pair at every time step, a list of “neighbors” is maintained for
each segment, which contains the numbers of all other segments that are separated
by a distance hj; < hj.., from the given segment. We assume that the number of
fiber segments that may interact with a given segment changes infrequently. Thus,
we only need to update the neighbor list every T, time steps. The fiber segments
are sorted into groups that share contacting segments. Restoring torques Y are then
calculated using the equations derived in Section 2.6.

The next step is calculate the constraint forces. The friction forces Flf-?c* are

found by solving Eq. (2.82) for each group of contacting fiber segments, in which

the values of the inextensibility constraint forces are that of the previous time step,
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X*

[prev]i-

fiber using Eq. (2.90).

Once the forces FIi* are known, the values of X} are calculated for each

With all of the forces calculated for each fiber segment, the final step is to in-
tegrate the equations of motion. The translational velocities r} and angular velocities
w; are calculated for every fiber segment using Eqs. (2.43) and (2.44). The new fiber

positions are found by integrating the velocity of the center-of-mass of the fiber R?

cm?

Nseg
: 1
R’ = > i (2.96)
Nseg i=1

The orientational motion of each fiber segment is specified by the time derivative
of the the Euler parameters qf as calculated with Eq. (2.63). The fiber center-of-
mass and the segment Euler parameters for the next time step are obtained using the

Adams-Bashforth two-step integration scheme of the form [38]

Ry, (v+A9) = Ry, (1) + |L5R;, (1) = 05R, (= An) Ay, (297)
qi (v + A7) = qi (7) + [1.5G7 () = 0.5¢7 (v — Ay)] Ay, (2.98)
where v = 4t. Finally, the fibers are “regrown” based on the values of the fiber

centers-of-mass and the orientations, in order to correct for integration and round-off

errors,

Nscg i—1
* * r S
ry = Rcm - NP Z (pl + p; + 2 ij> y (299)
seg

1=2 j=2
i—1

Tl =T +7p,P1+ 2, Y P+ TP (2.100)
j=2

2.10.3 Post-processing

During the simulation run, the fiber positions (R} ), orientations (q;), inextensibility

constraint forces (X7), and total number of contacts in the suspension are written
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to files at predetermined strain intervals. These files are post-processed to determine
various suspension averaged quantities such as the pair distribution function, average
number of contacts at steady state, and the suspension stress.

We determine a steady state by monitoring the average number of contacts
per fiber (nc(y)). We find that this quantity approaches a constant (with small
fluctuations) after simulating to a strain 74, which varies from run to run. The
average number of contacts per fiber at steady state is (ng(7))ss, is calculated by
averaging (nc) from ~yss t0 Yan.

The pair distribution function for the fiber centers-of-mass is calculated at
steady state for each simulation run. The pair distribution function g(r) is defined as
the probability of finding the centers-of-mass of any two fibers at a distance r apart,
relative to the probability expected for a completely random distribution of fibers at
the same density. The algorithm of Allen and Tildesley [1] is used to calculate g(r) for
the fiber centers-of-mass. We define a system to be flocculated when g(r = 0.01L) 2
3. This somewhat arbitrary criterion was established by comparing pair distribution
functions with snapshots of numerous suspension configurations.

The particle contribution to the stress in a fiber suspension is calculated using
slender body theory [Eq. (1.22)], in a manner similar to that developed by Mackaplow
and Shaqgfeh [54]. For a fiber made up of Ny, segments, the extra particle stress is

written in terms of the dimensionless quantities F}(s*), F,

* *
, s, and rj,

oP mnl3 Nocs he . . .
LT Z [s"F; (s)pi + s"piF; (s7)] ds (2.101)

Moy 16N2 r3 .

seg’ Ps
(P00 +1fF ) ) + 10,

where T4 is an isotropic contribution to the stress tensor of no interest. The expres-

sions for the dimensionless forces per unit length and net hydrodynamic force for each
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segment are (neglecting hydrodynamic interactions between segments)

4 1
(%) @) { 2pp} (U (s") — 17 — s™p;) (2.102)
4 1
thd* _ G oo% __ ¥ 2.1
i (2 ) [5 2pzpz} (U —17) (2.103)

Combining the equations above and assuming a simple shear flow [U*(s*) = §(r} +
s*p;) - €grad€flow, Where €g,q 1S a unit vector in the gradient direction and egqy is a
unit vector in the flow direction], the particle contribution to the stress simplifies to
N,
oP wnl3 iy
-z - T E®* - p.p: + p.p: - B —
7 s (L {m e e

seg

p:pipip; : E** — (pip; + P/ pi)

N ({5 - §pipi:| - (U5 I )y +1; {5 QPsz} (U3 rz)) }>

ps

+Y6. (2.104)

2.11 Planar fiber networks

2.11.1 Network formation

We employ a slight modification of the simulation technique described above to sim-

2

ulate the formation of planar fiber networks, or “sheets,” and then subject the sheets
to elongation to determine their tensile strength. Formation of the networks was ac-
complished by starting with a random distribution of fibers between parallel plates.
The plates were located at z = 0 and z = 2(L as shown in Fig. 2.13, while periodic
boundary conditions were employed in the x and y directions. The top plate has

a mass M, and the fiber sheet is formed by allowing the top plate to fall in the —z

direction under the force of gravity while pushing the fibers towards the bottom plate.
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Figure 2.13: Formation of a planar fiber network is accomplished by squeezing a
randomly oriented fiber suspension between two plates.

The bottom plate is a smooth planar screen that is only permeable to the suspending

liquid. The motion of the top plate is governed by

Nc,pl

d2Z 1
= =—Mg+ ) FY, (2.105)

M
dt?

where 2 is the vertical position of the top plate, g the acceleration of gravity, F ZN is
the force in the z direction due to frictionless interactions between the top plate and
fiber segments [using Eq. (2.7)], and N.p is the number of fiber contacts with the
top plate. Quantities in Eq. (2.105) are scaled as defined previously, except that the
characteristic deformation rate is now defined v = \/gi/b The dimensionless equation

for the motion of the top plate is thus

d22* 1 Ne,pl
pl N
=-14— E F 2.106
dt*2 + Fy & z ( )
where the weight parameter F} is
My

= . 2.107
g 67T7]0€ ( )

The value of the weight parameter used in the simulations was F, = 10°.
The fiber motion is determined as explained previously, and the motion of the

top plate is obtained by solving Eq. (2.106) numerically. When the desired network
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Figure 2.14: Example of fiber that intersects the end plane of the planar network.

thickness is reached, the motion of the top plate is stopped. The suspension is then
relaxed between the plates at the desired separation, by running the simulation with

no fluid or plate motion (i.e., constant plate separation).

2.11.2 Elongation of planar networks

The strength of the network formed is tested by elongating the network at a constant
velocity w, in the x direction. The samples have a length in the x direction of (L,
and periodic boundary conditions in the y direction. The tensile force is found by
applying a constraint on fibers that pass through opposing planes at © = +(L/2, as
illustrated in Fig. 2.14. The fibers intersect the planes at the point r; + v;p;, where
v; is the distance from the segment center to the point of intersection with the plane
in the direction of p;,
_ ECL/2 -1,

v = " 2.108
o (2.108)

where the + corresponds to intersection with the planes at = (L/2 or x = —(L/2,
respectively. The constraint for the NV, fiber segments that are “grabbed” at the
planes is
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The equations of motion for pulled fiber segments are modified by the addition

of an unknown constraint force in the z direction, F’é,. The quantity F} is the
magnitude of the force necessary to pull the fiber segment at a constant speed, u,,.
The equations are scaled as described in Section 2.7, except that now the characteristic

deformation rate is 4 = u,/b. The dimensionless equations of motion are now

7

P =a" + A7l ZFf“C* + X5, - X EPe, | (2.110)

* * — Tick 3 =~ * *
wi=bi + G- 4r2 ZG F + P (X + X

Ds

3
+ W[prz- X Ff*ém]] : (2.111)

Ds
We must add additional terms to the substituted constraint equations as well,
to take into account the unknown force magnitude FP*. The time derivative of the

inextensibility constraint [Eq. (2.74)] has the new form (\Ilj ) pull
() pun = W +IC; - F e, + IC, - FP 8., (2.112)

in which the orientation tensors KC; and IC! are

v
K. = A7l— ‘D2,
i T4, yeP
v’
1 2Vi41 o
K:; = Az+1 4r T yC T voPita-

The first two terms of the substituted friction constraint [Eq. (2.76)] are also modified

to the form

— 11 — N
(:Z])Il)ltljr*Q (‘:‘ij)i or 2 + (LZ ' ezljor 2) : ‘sz*ex

+ (Nj.el.OTQ) Fp*em, (2.113)

)
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where the tensors £; and N; are

v ~
L, = A7'——_Gy; pi,
! 4r, Y i P
vy -
Nj == —Aj +4Tp chi'pj-

Finally, we substitute r and w; into the pulling constraint [Eq. (2.109)],

(2

NCi
B)-X;+B X/, +) Dy Fi“+ & Fle, + 1M =0, (2.114)
J

where the orientation vectors BY, B!, D,;, €; and the term Z"" are

[ v
B? = _A;l_ . ﬁ$:| 'éxa
i 4r, Y ©
[ 3vf
le = Afl— - ﬁ?:| 'é:t:
i 4r, Y©
[ vk ~
_ —1 7 ~ ~
Di; = |A; - Wpi ‘ Gij‘| * €g,
L Ps
[ RV
_ -1 7 =2 ~
& = (A7 — WPZ] " €,
L Ps
Z-ipull = [ai — Vz*ﬁl bl] éa: — 1.

The unknown constraint forces Flf-;ic*, Xz, and F} are found using the approxi-
mate method described in Section 2.9.2. The previous values of the pulling forces F7?
are used to find Fg-ic*, and then X, and F! are found simultaneously (as done for
fibers with pin joints). Finally, the magnitude of the tensile force T" of the network
at a particular time step is found by

pos neg
N, Np

T:% iEP—ZQP : (2.115)
{ J

where NP°* and NJ¢ are the number of segments pulled at the planes v = +(L/2

and x = —(CL/2, respectively.
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Chapter 3

Flocculation in sheared fiber

suspensions

3.1 Introduction

Suspensions of non-Brownian fibers are found in a variety of applications, such as
pulp and paper and fiber-filled composites processing. The physical characteristics
of the suspensions, as well as the properties of the final products, depend on the
structure of the suspensions. The structure is affected by such features as the fiber
properties, interactions, and flow fields. Understanding the relationships among these
features, the suspension structure, and the macroscopic properties can therefore aid
in the design and optimization of processes and products. In this chapter, we employ
a fiber-level simulation method to probe the relationships between fiber properties,
interactions, and the suspension structure.

Many applications require a homogenous dispersion of fibers to yield a uniform
product. Long flexible fibers tend to aggregate in a process known as flocculation,

which produces spatially heterogeneous structures. While aggregation in colloidal dis-
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persions typically arises from attractive interparticle forces [72], Mason [55, 56] sug-
gested that non-Brownian fibers can aggregate by a mechanical mechanism. Fibers
in shear flow translate and rotate, resulting in collisions between fibers. Above a
critical concentration (nL? 2 1, where n is the fiber number density and L is the
fiber length), the frequent forced collisions between fibers can lead to flocculation via
mechanical entanglement. Meyer and Wahren and Soszynksi and Kerekes [58, 82, 81]
expanded on this notion, proposing a more detailed picture of the flocculation pro-
cess. Flexible fibers in a flow with nonzero velocity gradients will be exposed to
viscous and dynamic forces [58|, as well as interfiber contact forces [82, 81], which
elastically deform the fibers. When the flow ceases, the fibers attempt to relax, but if
the concentration is sufficiently large, the fibers will contact other fibers and come to
rest in elastically-strained configurations. The result is a mechanically-coherent fiber
network or floc. Soszynski and Kerekes [82] provided evidence for this mechanism
by conducting experiments with suspensions of nylon fibers. Suspensions subjected
to flow in a rotating, half-filled cylinder formed coherent fiber flocs above a critical
concentration. These flocs possessed sufficient mechanical strength to be manually
extracted from the cylinder. Some of these flocs were heated above the glass transi-
tion temperature of nylon to relax the stored elastic stresses within the fibers, and
then cooled to room temperature. The heat-treated flocs dispersed easily under gen-
tle stirring, while the never-heated flocs only dispersed under intense stirring. The
authors called this mechanism of flocculation “interlocking by the elastic bending of
fibers.” While other forces, such as colloidal forces and interfacial tension arising from
entrained gas bubbles, can certainly contribute to fiber aggregation in some systems,
it appears that the elastic-interlocking mechanism can contribute to flocculation in

any sufficiently concentrated suspension of flexible fibers.
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Meyer and Wahren [58] modelled concentrated suspensions of flexible fibers as
elastically-interlocked networks, where each fiber is in contact with at least three oth-
ers. The predicted dependence of the shear modulus on fiber aspect ratio r, = L/d
(d is the fiber diameter), volume fraction ®, and fiber Young’s modulus Ey agreed
reasonably well with experimental data on pulp suspensions [2, 87]. Bennington et
al. [12] applied a similar network theory to describe their experimental data on the
yield stress of suspensions of synthetic and wood fibers. The predicted dependence
of the yield stress on fiber aspect ratio and volume fraction agreed fairly well with
experimental results. However, the predicted dependence on the fiber elastic modulus
did not agree well with experiments, particularly for the wood fibers. The authors
attributed the lack of agreement to more complex surface interactions than that ac-
counted for in the model. It is also possible that, contrary to the assumption in the
network theory, the structure of the network may depend on the fiber modulus, and
thus the predicted simple dependence of the network properties on fiber modulus may
not hold. Indeed, the flocculation behavior of suspensions and thus their microstruc-
ture depends on numerous variables, including the suspending fluid viscosity [101],
the deformation rate [39, 85], the fiber length [46, 82, 81], the concentration [45], and
the type and amount of additives [11, 100]. We will show in this chapter that the
structure predicted by simulations also depends on the fiber modulus.

Particle-level simulations are common methods for probing particulate sus-
pensions, and more specifically, for understanding the relationships between particle
properties and interactions, the suspension structure, and macroscopic behavior (see,
for example, Bossis and Brady [14]). The equations of motion for each particle are
solved numerically, subject to the forces and torques identified, in order to evolve

the particle positions and orientations in time, and thus produce a prediction of the



80
suspension microstructure. This method is sufficiently general to allow the inclusion
of a variety of features, such as elongated and flexible particles, as well as various
forces, such as hydrodynamic forces and interactions, colloidal forces and friction, to
name a few. The complexity of the physical model is only limited by the computa-
tional resources required to evaluate the forces and torques and solve the equations
of motion.

Numerous fiber suspension studies have focused on rigid, elongated bodies in
Newtonian fluids. Claeys and Brady [20, 21] modelled fibers as rigid prolate spheroids
(ellipsoids of revolution). They developed a method for accurately evaluating the hy-
drodynamic forces and torques, including both short-range hydrodynamic interactions
(lubrication forces) as well as long-range, many-body hydrodynamic interactions.
Mackaplow and Shaqfeh [54] employed slender-body theory to accurately evaluate
the long-range hydrodynamic interactions between prolate spheroids or cylinders. As
with the method of Claeys and Brady, the calculations were so computationally de-
manding that results for suspensions of long fibers in simple shear flow were limited to
prescribed suspension structures. Thus these methods were not employed to predict
the suspension structure resulting from flow. Simulations by Yamane et al. and Fan et
al. [28, 98] employed approximations for the hydrodynamic interactions between rigid
fibers. These authors did not report fiber flocculation under the conditions simulated
(nL? < 50, r, < 30).

Sundararajakumar and Koch and Harlen et al. [35, 84] simulated suspensions
of rigid, slender rods interacting via contact forces. They argued that for flowing
suspensions of fibers, lubrication forces cannot prevent fibers from contacting, and
thus short-range hydrodynamic interactions were neglected. Harlen et al. [35] simu-

lated single spheres falling through neutrally-buoyant fiber suspensions to illustrate
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the importance of fiber-fiber contacts on the flow properties of fiber suspensions. For
low concentrations, interfiber contacts are rare and the flow behavior is dominated
by long-range hydrodynamic interactions. However, as the concentration is increased
such that the fibers are in frequent contact, the flow behavior is strongly influenced
by the contacts. In fact, for nL? > 12 (r, = 20), the drag on the settling sphere
calculated by including long-range hydrodynamic interactions and contact forces is
indistinguishable from that calculated by including contact forces alone (and in good
agreement with experimental results reported by Milliken et al. [59]). Although the
falling sphere influences the suspension structure, the authors did not report any
tendency toward fiber flocculation.

Several studies have focused on simulating suspensions of flexible fibers. Ya-
mamoto and Matsuoka [93, 94] modelled flexible fibers as chains of rigid spheres
connected through springs, with potentials to mimic resistance to bending and twist-
ing. Chain connectivity is maintained by constraints, producing equations that must
be solved simultaneously with the equations of motion. Ross and Klingenberg [71]
modelled flexible fibers as inextensible chains of rigid prolate spheroids connected
through ball and socket joints. This model eliminates the need for iterative con-
straints to maintain fiber connectivity, and can represent large aspect ratio fibers
with relatively few bodies. These features help to reduce computations, facilitating
simulation of concentrated suspensions. Schmid et al. [75] extended this method,
modelling flexible fibers as chains of spherocylinders connected by ball and socket
joints, that interacted via short-range repulsive forces as well as friction forces. While
attractive forces can certainly give rise to fiber aggregation, Schmid [74] demonstrated
that interfiber friction—in the absence of attractive forces—can produce fiber floccu-

lation.
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In this chapter, we expand upon the study of Schmid et al. [75] to probe
flocculation in flexible fiber suspensions caused by friction forces. The fiber model and
simulation method are briefly described in Section 3.2. In Section 3.3.1, we summarize
the results obtained by Schmid et al., illustrating the importance of friction, fiber
stiffness, and fiber shape on flocculation. These relationships are investigated further
in subsequent sections. In Section 3.3.2, we show that the coefficient of friction
necessary to hold model flocs intact decreases with increasing fiber stiffness, and
that friction-induced flocculation can occur for values of friction coefficients and fiber
stiffnesses similar to those measured experimentally. We also illustrate how friction-
induced flocculation is consistent with several experimental observations. The effects
of fiber shape are probed in Section 3.3.3. The concentration at which U-shaped fibers
flocculate decreases with increasing fiber curvature. We show that sliding friction
(Section 3.3.4) and weak attractive forces (Section 3.3.5) have little impact on friction-
induced flocculation. In Section 3.3.6, we show that, in some cases, anisotropic fiber
bending can inhibit flocculation. Conclusions from this chapter are summarized in

Section 3.4.

3.2 Simulation method

Flexible fiber suspensions are modelled as neutrally-buoyant chains of linked rigid
bodies immersed in a Newtonian liquid. The model includes realistic features such as
fiber flexibility, irregular equilibrium shapes, and mechanical contact forces between
fibers. The model and simulation method are similar to those employed by Schmid
et al. [74] and are described in more detail in Chapter 2.

Each fiber in the suspension is represented by N, rigid cylinders (length 2/,
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contact ik

Figure 3.1: Schematic diagram of a model fiber composed of rigid spherocylinders
linked by ball and socket joints. Here, segment ¢ is in contact with segment k& from
another fiber.

radius b) with hemi-spherical end caps, connected end-to-end by ball and socket joints
(Fig. 3.1). The motion of the fiber segments is described by Newton’s laws of motion
in which we neglect fiber inertia. The force balance on a fiber segment ¢ includes
contributions from hydrodynamic drag (F1*?), mechanical contact forces (F¢"), and

forces at each joint that maintain the segment connectivity (X;),

Ng,
FY 4 X — X+ Z ix =0, (3.1)

k
where N¢, is the number of contacts on fiber segment 7. The torque balance on fiber
segment ¢ includes similar contributions with the addition of a restoring torque at

each joint (Y;),
No,

TP+ Yio — Y+ 0p; x [Xip + X + ) (G x F"] =0, (3.2)
k

where T?yd is the hydrodynamic torque, p; is the orientation vector of the segment,
and Gy is a vector from the center of segment 7 to the point of contact with segment
k.

In this model, hydrodynamic interactions are neglected based on simulations

performed by Sundararajakumar and Koch and Harlen et al. [35, 84|, as previously
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explained. This assumption allows us to evaluate the hydrodynamic drag force and
torque as that on an isolated body, F¥¢ = A;-[U®—f;] and T = C;- [ —w,]+H,
E>, where the resistance tensors A;, C;, and ItIZ for the spherocylinder segments are
approximated by the resistance tensors of a prolate spheroid with an equivalent aspect
ratio 7., = 0.77,/Nseg (see Chapter 2). The ambient velocity U$°, angular velocity
7, and rate of strain tensor E> are evaluated at the center-of-mass of each segment,
and only simple shear flows are simulated [i.e., U* = (§z,0,0), where + is the shear
rate]. The segment translational and angular velocities are ¥; and w;, respectively.

The restoring torque Y; describes the resistance of the elastic fibers to bending
and twisting. The bending and twisting components of this torque are assumed

to be linear in the difference between the bending and twisting angles (6; and ¢;

respectively) and their equilibrium values (6 and ¢:9),
|Yz‘ = K;b(ei - 9?01) + /it<¢i - (b‘;q)’ (33)

where k; and k; are the bending and twisting constants of the fiber. The bending
constant is related to the stiffness of the fiber material by k, = EyI/2¢, where Fy is
the Young’s modulus, and I = wb*/4 is the area moment. The twisting constant is set
to Kkt = 0.67ky in this study, equal to that of a linearly elastic circular cylinder with
a Poisson’s ratio of 0.5. The fiber flexibility is characterized by a single parameter
which we call the effective stiffness, ST = EyI/n,yL*, where 7, is the suspending
fluid viscosity, 7 is the shear rate, and L is the total fiber length.

Fibers of circular cross section are assumed to have no preferential bending
direction (isotropic bending). However, many fibers, such as refined wood fibers,
have a ribbon-like appearance and tend to bend easier in one direction. This may be
modelled by defining two orthogonal bending directions with (Kp)nara = Evy Ihara/2¢

and (Kp)easy = Eyleasy/20 < (Kp)hard, as illustrated in Fig 3.2. For such anisotropic
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z

Figure 3.2: Schematic illustration of an anisotropic fiber with a preferred bending
axis . In simulations with anisotropic fibers reported here, the fiber cross-section
remains circular.

bending situations, the twisting constant remains fixed at r¢ = 0.67(Kp)easy. When
Ey g — 00, the joint may be modelled as a hinge, resulting in an additional
constraint that restricts bending at a joint to that about a preferred axis (e.g., the g
axis in Fig. 3.2),

Yi " Pit1 = cost, (3.4)
where y; is the preferred bending axis, defined with respect to segment i, and ¢’ is a
constant (¢ = /2 for all simulations with anisotropic bending reported here).

The fiber segments remain connected by applying a constraint for each joint,
r; +{p; = riy1 — (Pit1, (3.5)

where r; is the position of the center of segment 7. These constraint equations allow
for the solution of the constraint forces X; at each joint. Since the segments are rigid
and remain connected, the fibers are inextensible (but still flexible).

Fibers experience mechanical contacts with other fibers in the suspension. Two
fiber segments i and k are considered to be in contact if the separation between their
surfaces, h;g, is less than 0.33b. The force that results from each contact is decomposed
into two components—a force in the normal direction of the contact (FY) and a

frictional force (Fi¢) in the plane of the contact. The purely repulsive normal force
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exerted on segment i by segment k is modelled as Ff}c = —Fexp|—ahi|n;, where ng

is the unit normal vector directed from segment 7 to k, F' = 9007n,¢bY is the force
magnitude, and a = 20/b. The friction force is determined by the constraint of no
relative motion in the plane of contact,
Auyy, - ellOC
Auy, e | =0, (3.6)
Fic - ny,
where Auyy is the relative velocity between segments ¢ and k at the point of contact,
loc loc

and the plane of contact is defined by the vectors e°° and ey°. The calculated friction

force is then subjected to a Coulombic friction law of the form

|FlMc| < 5" FN| = contact remains intact

. . Au;
[t (37)
| Ay
where ;5% and p¥" are the static and kinetic coefficients of friction.

The equations of motion and the constraint equations for all of the fiber seg-
ments in the suspension can be expressed as a system of differential algebraic equa-
tions (DAESs) for the unknown coordinates and constraint forces,

a-F(qA) = 0
W(a) = 0, (3.8)

E(a,q,A) = 0,
where q is a vector containing the generalized coordinates of each fiber segment (po-
sitions and orientations), and A is a vector containing all the constraint forces (X and
F¢) in the suspension. If the segment orientations are represented by Euler param-
eters [92], there are 7N, Ny equations of motion to be solved. The inextensibility
constraint [Eq. (3.5)], represented by the vector ¥, is made up of 3Ngp(Ngeg — 1)

constraint equations that depend on only the positions and orientations. The 3N¢
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friction constraint equations [Eq. (3.6)] are contained in =, where N¢ is the total
number of contacts in the system.

Simulations are performed by randomly placing fibers at their equilibrium
shape into a cubic simulation cell of size ((L)3, where ( is the cell size scaling factor
(1.5 < ¢ <4). A linear shear field is imposed and periodic boundary conditions are
applied with the Lees-Edwards modification for shearing systems [1], to simulate an
infinite suspension. The fiber motions are obtained by the numerical solution of the
system of DAEs in Eq. (3.8). An approximate solution method was developed to

solve this system, the details of which are described in Chapter 2.

3.3 Results and discussion

3.3.1 Illustration of flocculation via friction

Suspensions of flexible fibers in simple shear flow were simulated for a variety of values
of the parameters introduced in the previous section. Consider first the behavior of
fibers that bend isotropically with Ny, = 5, aspect ratio r, = 75, concentration
nL? = 20, and that interact only via short-range repulsive forces and static friction
(u¥" = 0 throughout this chapter, unless specifically stated otherwise). This model
is similar to that studied by Schmid et al. [75]. As reported therein, this system
can flocculate for certain ranges of values of the remaining parameters (fiber shape,
stiffness, and coefficient of static friction), even though attractive forces between fibers
are absent, as illustrated in Fig. 3.3.

In Fig. 3.3(a), the coefficient of friction is large (u™** = 20), the fibers are
relatively stiff (S°f = 0.05), and the equilibrium shape is not straight (6°¢ = 0.8,

¢*1 = 0.7). The resulting suspension structure is heterogeneous, with two fiber flocs
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SRR

Figure 3.3: Simulation snapshots after shearing to a strain of v = 1500, with param-
eters nL? = 20, r, = 75, Nyg = 5, and (a) p* = 20, S°f = 0.05, 0°4 = 0.8, ¢°4 = 0.7
(flocculated suspension); (b) same as (a) except 0% = ¢°4 = 0; (c) same as (a) except
pst® = 0; and (d) same as (a) except ST = 0.0005.

apparent in the simulation box. For each of Figs. 3.3(b)-(d), one of the above features
is removed, and as a result, the suspension structure remains homogeneous in simple
shear shear flow. In Fig. 3.3(b), the equilibrium shape is straight (¢ = ¢4 = 0); in
Fig. 3.3(c), friction is absent (£*** = 0); and in Fig. 3.3(d), the fibers are more flexible
(S°f = 0.0005). Thus the parameter values employed in Fig. 3.3(a) are sufficient to
achieve flocculation in sheared suspensions. The effects of these parameters, as well
as others, on the suspension structure are probed in more detail below.

The suspension structure can be characterized quantitatively by the pair distri-
bution function of the fiber centers-of-mass, g(r), and the average number of contacts
per fiber, (n.). The pair distribution functions are plotted as a function of separation
in Fig. 3.4(a) for the systems depicted in Fig. 3.3. For the homogeneous suspensions,
there is an equal probability of finding fiber pair centers-of-mass with any separation.
The flocculated suspension, however, has a high probability of finding fiber centers at

small separations. The pair distribution function can be used to identify systems that
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flocculate. We define a suspension as flocculated if g(r = 0.01L) > 3. The average
number of contacts per fiber is plotted as a function of shear strain « in Fig. 3.4(b)
for each of the systems in Fig. 3.3. For the nonflocculated systems, (n.) rapidly
achieves a constant, steady-state value. For the flocculated system, (n.) increases to
a constant steady-state value greater than those for the nonflocculated system, over a
strain of several hundred. Monitoring (n.(v)) during a simulation run is an effective
way of determining when steady state is achieved. The steady-state value of (n.)
also describes the extent to which a fiber network is formed. Meyer and Wahren [58]
defined a fiber network as a system of fibers in which each fiber is held in position by
contact with at least three other fibers. This is consistent with the flocculated system

illustrated in Fig. 3.3(a), where (n.) ~ 3 at steady state.

3.3.2 Effects of friction and fiber stiffness

Fibers in contact interact via friction forces characterized by a static coefficient of fric-

stat stat

tion, p****. For p™*" = 0, the suspension structure remains homogeneous regardless of

the other parameter values. As illustrated in Fig. 3.3, for certain ranges of parameter

values, suspensions will tend to flocculate for sufficiently large values of p®?*. For

stat
min?

stat

such systems, as p***" is increased from zero above p which depends on the other

parameter values, suspensions begin to show increased heterogeneity. For the param-

eter values (Nyeg, 7, nL3, S 0% ¢°4) = (5,75,20,0.05,0.8,0.7), pStat ~ 5. As pstat

stat
max’

is increased further, the degree of heterogeneity increases; however, for 5%t >

the structure as characterized by g(r = 0.01L) or (n.(y — o0)) no longer changes

stat

st is also a function of the other parameter values; for

appreciably. The value of

the values listed above, 5%t ~ 10. For most simulated flexible fiber suspensions that

max

we have observed to flocculate, 10 < pstat < 100.

max
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fiber versus strain for the runs depicted in Figure 3.3.
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Similar behavior is observed as the fiber flexibility is varied. All suspensions
will remain homogenous for sufficiently small effective stiffness (S°f = EyI/nyyL* <
1). As illustrated in Fig. 3.3, some suspensions will flocculate when the effective
stiffness is increased above a certain value (which depends on the other parameter
values).

The requirement of both a sufficiently large effective fiber stiffness and a suf-
ficiently large coefficient of friction in order to produce heterogeneous structures is
consistent with the elastic interlocking mechanism of flocculation proposed by Kerekes
et al. [47] (also called Type-C cohesion). They proposed that the cohesive forces that
hold fibers within flocs are caused by interfiber friction. The strength of the friction
force is proportional to the normal force between contacting fibers, and this normal
force is a function of the fiber stiffness. Soszynski and Kerekes [82] confirmed this
mechanism experimentally; nylon fiber flocs readily dispersed when the fiber stiffness
was reduced by heating above the glass transition temperature of nylon. Schmid et al.
[75] reported similar behavior using a model and simulation method similar to those
employed here. Flocs formed in simple shear become trapped in elastically-strained
configurations upon cessation of shear. When the flocs are extracted from the sim-
ulation box and placed in an unbounded shear flow, the floc slowly disperses. If the
effective fiber stiffness or the coefficient of friction is reduced, the fibers disperse much
more rapidly (see also Schmid et al. [75] and Chapter 4).

Although the simulation results presented thus far appear to agree with ex-

stat

perimental observations, unreasonably large values of p**" are necessary to see floc-

stat measured

culation for the conditions described above (p*?* > 1). The value of u
experimentally for contacting cellulose surfaces and cellulose fibers is approximately

0.5 [3, 99]. However, we also find that the effective stiffness values employed thus far
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are small compared to those typically achieved in experiments. Choosing dimensional
parameter values typical for wood fibers sheared in water (EyI ~ 1072N - m? [86],
L ~ 2.3mm, d ~ 30 pm, 1y = 0.001 Pa-s, ¥ ~ 10), the dimensionless stiffness is
Sef ~ 4. This is much larger than the values used in the simulations with equivalent
aspect ratios (1, = 75). Simulating suspensions of fibers this stiff requires a very
small time step (YAt < 107®) and thus significantly more computational power than
is currently available to simulate to shear strains v > 1000.

To probe the behavior of flocculating suspensions composed of much stiffer
fibers, we investigated the behavior of a test floc made up of five inherently straight
fibers interwoven into a “star” configuration (illustrated in the inset of Fig. 3.5; Ngeg =
7, 1, = 56, °1 = 0,¢°¢ = 0) similar to the test structure proposed by Farnood et al.
[29]. The test floc was placed in a simple shear field and sheared to a strain v = 100
(in the plane of shear). For a fixed value of S°T the test floc would remain intact if

stat

15 were large enough, and the test floc would disperse if pt¢

were too small. The

stat

minimum value of ;***" necessary keep the floc intact was defined as a “critical” friction

stat

stat * which is a function S°f. The critical friction coefficient is plotted

coefficient, u
as a function of S°f for the star in Fig. 3.5. As the stiffness increases, the coefficient
of friction necessary to hold the floc together decreases. These results suggest that
for large values of S°f, comparable to those typically encountered experimentally
(S > 1), the coefficient of friction necessary to see flocculation in simulations of
sheared suspensions may indeed approach the coefficient of friction values measured
experimentally.

Varying the dimensionless stiffness S°T can be achieved by varying the intrinsic

fiber stiffness (Fy ), the fiber length (L), the suspending fluid viscosity (1), or the

shear rate (7). Soszynski and Kerekes [81, 82] showed the importance of the effective
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Figure 3.5: Critical coefficient of friction as a function of the effective stiffness for the
star test floc in simple shear flow, (Ngeg, 17, 0°4, ¢°%) = (7, 56,0, 0).

fiber stiffness in producing flocs in a recirculating flow of nylon fiber suspensions. As
no was increased (effective stiffness decreased) the concentration at which flocs first
formed [threshold concentration, (nL?3)y,] increased. Above a certain value of 7, flocs
would no longer form. This phenomenon was investigated with the simulation method
presented here, by shearing suspensions with a fixed effective stiffness to v = 1500
and varying concentrations in order to determine the threshold concentration. The
results are shown in Fig. 3.6 where (nL?)y,, is plotted as a function of 1/S°% oc 7
for the parameter values (Ngeg, 7p, 0°9, ¢°4, ") = (5,75,0.6,0,20). The threshold
concentration increases as 1/S°T increases, with no flocs observed for 1/5°T > 500,
qualitatively consistent with the experimental observations reported by Soszynski and
Kerekes. Soszynski and Kerekes [82] explain the dependence of flocculation tendency
on 7, in terms of a competition between the different forces that determine fiber

motion. In low 7, suspending fluids, fiber motion is dominated by fiber interactions
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Figure 3.6: Threshold concentration to produce flocs as a function of the inverse of
the effective stiffness, 1/S% o¢ 1y; (Neeg, 7p, 0°4, ¢°%, %) = (5, 75, 0.6, 0, 20).

(as well as acceleration and deceleration in unsteady flows), and the fibers do not
closely follow the suspending fluid motion. In sufficiently concentrated suspensions,
this nonaffine motion can result in local “crowding,” which leads to entanglement
and floc formation. The fiber motion in large 7, fluids is dominated by hydrodynamic
forces, resulting in affine motion and perhaps a higher degree of fiber alignment
(in shear flows). Crowding is thus inhibited, resulting in no floc formation. This
explanation is consistent with the model and simulation results presented here. The
relevant dimensionless quantity, the effective stiffness ST = FEy I /n,vL*, characterizes
the relative importance of viscous and elastic forces, the latter of which is intimately
related to fiber interactions. Furthermore, as illustrated in Figs. 3.3(a) and (d),
decreasing S°% sufficiently (i.e., increasing 7,) clearly results in more aligned structures

in addition to a more homogeneous system.
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3.3.3 Effects of fiber shape

The equilibrium shape of a fiber significantly impacts the suspension microstructure.
The dependence of fiber equilibrium shape on flocculation behavior has been inves-
tigated by performing simulations with suspensions of U-shaped fibers. The shape
may be characterized by the common equilibrium angle 8¢ (¢4 = 0) at each joint, or

equivalently by the fiber radius of curvature, defined here for linked rigid bodies as

o= (m(eiq/z) * tan(;eq/2)> ’ (3.9
where ¢ is the segment half-length. The first term in parentheses is the radius of a
circle passing through the ball and socket joints, and the second term is the radius of
a circle tangent to the centers of the fiber segments. The radius Ry is the average of
these two radii.

Suspensions with specific radii of curvature and various concentrations were

simulated in simple shear flow to v = 1500, with all other parameters fixed [( Ngeg, 7, ST, p52)

(5,75,0.05,20)]. The results are summarized in Fig. 3.7(a) where the homogeneity of
the suspensions is mapped as a function of curvature and concentration. Suspensions
that remained homogeneous are represented by open circles, while suspensions that
flocculated are represented by filled circles. Suspensions flocculate at lower concentra-
tions as the dimensionless fiber curvature (b/Ry) is increased. As the fibers become
nearly straight (b/Ry — 0), the suspensions only flocculate at high concentrations,
and perfectly straight fibers have never been observed to produce hetergoeneous struc-
tures in the simulations. However, it is possible that flocs formed at sufficiently large
concentration may exceed the simulation box size, or that there is a transition to the
formation of space-filling, elastically interlocked networks [75].

The variation in suspension structure with fiber shape can also be characterized
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by the average number of contacts per fiber at steady state (n.)s, as illustrated
in Fig. 3.7(b). Here, (n.)s is plotted as a function of b/Ry for Ny, = 3 and 5,
with the remaining parameter values (nL?, ST r,, p5at) = (20,0.05,75,20). As b/Ry
increases (the fibers become more curved), (n.)s increases. This is likely caused by
the decreased rotation period of higher curvature fibers resulting in more interfiber
collisions. The values of (n.)s increase slowly with increasing b/Ry at first. When
the curvature becomes large enough to cause flocculation, (n.)s increases rapidly.

The fiber shape also depends on the number of segments, and thus so do the
details of the suspension structure, as illustrated in Fig. 3.7(b). Flocculation for
suspensions of three-segment fibers is shifted to slightly larger curvatures compared
to suspensions with five-segment fibers. Suspensions of fibers with Ngz > 5 show
approximately the same behavior at an aspect ratio of r, = 75, under these conditions.
One would expect the influence of the number of segments on the suspension structure

to be a function of the fiber aspect ratio and flexibility.

3.3.4 Effects of kinetic friction

All of the results presented thus far employ only the static friction constraint (u*" = 0
in Eq. [3.7]); if the force required to keep contacting segments ¢ and k from sliding
exceeds p*%|FY |, the segments are allowed to slide unimpeded (except for hydro-
dynamic drag). To investigate the influence of kinetic friction on suspension struc-
ture, shear flow was simulated for the parameter values (Ngeg, 7, nL3, ST, 6%, ¢°9)
= (5,75,20,0.05,0.6,0), and various values of ;**®* and p*®. The steady-state pair
distribution functions for some of these simulations are plotted in Fig. 3.8, and the
results are summarized below.

In the absence of kinetic friction (¥ = 0), flocculation only occurs for g5t >
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Figure 3.7: (a) Suspension homogeneity (at v = 1500) mapped as a function of cur-
vature (b/Ry) and concentration [( Ny, 7p, ST, pft2t) = (5, 75,0.05,20)]; (b) Average
number of contacts per fiber at steady state ((n.)ss) as a function of b/ Ry for suspen-
sions at nL? = 20 after shearing for v = 1500 [(Ngeg, 7, ST, p5%%) = (5, 75,0.05, 20)].
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Figure 3.8: Pair distribution function for the fiber centers-of-mass of suspensions in
simple shear flow at steady state v > 1000, for various values of the coefficients of
static and kinetic friction (Ngeg, rp, nL3, S, %4, ¢°1) = (5,75, 20, 0.05, 0.6, 0).

stat ~ 10. Such behavior is illustrated in Fig. 3.8, where the pair distribution function
for a simulation with g5t = 20 and p*" = 0 exhibits a flocculated structure (g(r =
0.01L) ~ 9). Adding sliding friction does not substantially influence the structure, as
illustrated by the similar pair distribution function for p**** = 20 and p*®* = 20.

stat — 1. which is less than

Consider next the “incipient” situation where u
that required to observe flocculation (<™ = 0). The addition of kinetic friction
with " = g% = 1 is not sufficient to cause the suspension to flocculate. This
is illustrated in Fig. 3.8 where the pair distribution function for this case reflects a
homogeneous structure. Similar behavior is observed for all simulations with p*® <
ptt < pstat s We thus conclude that kinetic friction does not significantly influence

flocculation behavior. In other words, kinetic friction cannot significantly reduce the

coefficient of static friction necessary to induce flocculation.
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Not only is kinetic friction unable to induce flocculation in nearly flocculated
systems, but the addition of kinetic friction can actually inhibit flocculation when
pkin s stat s stat - Thig g llustrated in Fig. 3.8 in which the pair distribution
function for p**** = 20 and p¥" = 200 characterizes a structure less heterogenous
than that obtained for p*** = 20 and p/*" = 0.
While kinetic friction can affect the suspension structure, it apparently does not
significantly influence flocculation behavior. Thus in the remainder of this chapter,
kin

only results from simulations with p* = 0 are reported.

3.3.5 Effects of weak attractive forces

All of the simulations discussed thus far have been performed in the absence of at-
tractive forces between fibers. However, experiments have shown that weak attractive
forces can exist between fibers in suspension. Shchukin et al. [79] reported attractive
force magnitudes of |[F?**| ~ 0.04 uN for cellulose fibers in water, and Chaouche and
Koch [18] reported attractive force magnitudes in the range |F#*| ~ 0.01 — 6 uN for
nylon fibers in various fluids. While attractive forces may themselves cause aggrega-
tion, they may also serve to lower the coefficient of friction necessary to see friction-
induced flocculation. To model attractive forces in the simulations, we added a weak
attractive term to the normal force between fibers F} = —6mn,(by[F exp(—ah) —
Ay exp(—aph?)|ng,, where Ay is the dimensionless magnitude of the attractive force
and ap is related to the decay length of the attractive force. The parameter val-

~ 0.02 uN (for

ues were selected so that the maximum attractive force is [FX_|

F =150, a =20, Ay =9, and ap, = 35, and the suspension parameters 1, = 1 Pa - s,
L = 20Ngy = 2.5 mm, b = 16 pum, and ¥ = 10 s™'). The structures of suspen-

sions in simple shear flow with purely repulsive interactions (Axy = 0) and with weak
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Figure 3.9: Pair distribution function for the fiber centers-of-mass of suspensions in
simple shear flow at steady state v > 1000, with and without attractive potentials
(Nsegs 7y nL3, ST 64, ¢°d) = (5,75, 20,0.05,0.8,0.7).

attractive forces (Ax = 9) are compared in Fig. 3.9 where the steady state pair

stat and the remaining pa-

distribution functions are presented for various values of
rameters values fixed at (Ngeg, rp, nL3, ST, 04, ¢4 150 = (5,75, 20, 0.05,0.8,0.7,0).
With p*%* = 5, suspensions with and without attractive forces flocculate. The fibers
with weak attractive forces have a slightly higher probability of having small separa-
tions between the fiber centers-of-mass than fibers with purely repulsive interactions
[g(r = 0.01L) = 8 and g(r = 0.01L) =~ 6 for Ay = 9 and Ax = 0, respectively].
However, for x5 = 1 < pfft ~ 5 the pair distribution functions reflect a homoge-
neous structure for both Ay = 0 and Ay = 9. Thus weak attractive forces do not
significantly alter the minimum coefficient of friction necessary to induce flocculation.

Schmid [73] demonstrated the effect of using larger attractive forces between

fibers (|FN,.| ~ 10 uN) in the absence of friction (p* = ;%" = (). Although larger

x|
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attractive forces did lead to flocculation in the absence of friction, the behavior of
the systems was markedly different than that exhibited by systems that flocculate by
friction. The fibers did not elastically interlock, as observed experimentally [81, 82].
In particular, increasing the effective stiffness lead to a less coherent structure. Thus
attractive forces alone cannot explain the observation reported by Soszynski and
Kerekes [82] that reducing elastic stresses leads to less coherent structures.

Chaouche and Koch [18] observed flocculation in suspensions of nearly straight
nylon fibers in viscous fluids with smaller aspect ratios (r, ~ 36) sheared at very low
shear rates (¥ < 1). They hypothesized that flocculation was due to attractive
forces between fibers because the fibers were sufficiently stiff to be considered rigid
rods, suggesting that they could not deform and elastically interlock (ST > 1).
Simulations of perfectly rigid fibers both with (Ax = 9) and without weak attractive
forces at conditions similar to those employed by Chaouche and Koch (r, = 35 and

stat _, ~o. If the fibers were made flexible

nL? ~ 17 —52) did not flocculate even as p
and slightly deformed (Ngeg, 7p, n.L3, S°T, 69, ¢4, 5tat) = (5,75,17—52,0.7,0.1,0, 20),
the simulation still did not produce a flocculated structure with or without weak
attractive forces. However, the simulations could not be performed at the large values
of the effective stiffness reported by Chaouche and Koch (S°T ~ 2000); it is possible

that the simulations could produce flocs at larger values of S°T if such simulations

could be performed.

3.3.6 Effects of anisotropic bending

We investigated the effect of changing the bending stiffness in the joints such that the
fibers have a preferential bending direction (anisotropic bending). The fiber joints

were changed from ball and socket joints to pin joints, which constrain the motion
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of adjacent fiber segments to a plane. This makes the effective stiffness infinite for
a restoring torque parallel to the plane [(S°),..q — oc], while allowing the effective
stiffness for bending perpendicular to the plane [(ST)q.y] to remain finite.

The pair distribution functions for the fiber centers-of-mass for suspensions of
isotropic fibers (S°T = 0.05) at p**** = 20 and for suspensions of anisotropic fibers
with pin joints [(A) (S°T)easy = 0.05, ps2t = 20; (B) (S°)ensy = 0.05, pft2t — o0;
and (C) (S°M)eusy = 0.01, p** = 20], in which all other variables are held con-
stant [(Neeg, rp, nL3,, 0%, ¢°4, k) = (5,75,20,0.6,0,0)], are plotted in Fig. 3.10.
The anisotropically bending fibers (A), result in a relatively homogenous suspen-
sion at steady state, in contrast to the isotropic fibers that flocculate strongly at
the same conditions. Increasing the coefficient of friction for the anisotropic fibers
to infinity (B) results in a flocculated suspension, although it is less heterogeneous

stat

than the equivalent suspension of isotropic fibers with p%** = 20. Decreasing the
effective stiffness in the bending direction also results in a homogeneous distribution
of fibers (C). If the pin joints are replaced by anisotropic ball and socket joints with
(SN para = 5(SM)easy = 0.25 or (S°M)jara = 2(SM sy = 0.1 with all other conditions
the same as those given above, the suspension no longer flocculates.

At present, we are unable to explain the behavior observed for simulations of
anisotropically bending fibers. One possible explanation for this change in flocculation
behavior may be that the number of configurations the anisotropic fibers can assume
is too limited to allow the fibers to entangle and interlock. However, wood fibers
have ribbon-like structures which give them preferential bending directions, and wood
fibers will flocculate. While the model does take into account preferential bending,

the real fiber geometry is not considered. These “flattened” wood fibers can contact

one another over much larger areas than our model fibers (circular cross-section),
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Figure 3.10: Pair distribution function for the centers-of-mass of fibers with isotropic
(S°f = 0.05, x5 = 20) and anisotropic bending [(A) (SM)easy = 0.05, s = 20;
(B) (SM)easy = 0.05, 15" — o00; and (C) (S°M)easy = 0.01, 5% = 20] using pin joints
after shearing for v = 1500 with (Ngeg, 7, L3, , 6%, ¢°, p5i0) = (5, 75,20, 0.6, 0, 0).

which may result in enhanced frictional interactions or even bonding. Indeed, the
model has shown that anisotropic fibers will flocculate by substantially increasing

152 Also, real fibers have a distribution of lengths, stiffnesses, cross-sectional areas,

and shapes that we have not considered in the results reported here.

3.4 Conclusions

We have employed a model for flexible fibers and a particle-level simulation technique
to investigate the relationships between fiber properties, interactions, and the struc-
ture of non-Brownian, flexible fiber suspensions in simple shear flow. The fiber model
includes such realistic features as non-straight equilibrium shapes, flexibility, and

frictional contacts. Each fiber is composed of a series of linked rigid spherocylinders
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connected by ball and socket joints.

The simulations show that suspensions of flexible fibers interacting via fric-
tional contacts can flocculate, even in the absence of attractive interfiber forces. The
flocculation process observed is consistent with the elastic interlocking mechanism
proposed by Soszynski and Kerekes [82]. The tendency toward flocculation depends
on several parameters. A suspension of fibers that are too flexible, or whose coef-
ficient of static friction is too small will not flocculate, regardless of the values of
the remaining parameters. The minimum coefficient of friction necessary to observe
flocculation appears to decrease as the fiber stiffness increases. The dependence of
the homogeneity of the suspension structure on the dimensionless fiber stiffness (ef-
fective stiffness, S°T = EyI/n,yL*) agrees qualitatively with numerous experimental
observations. Fiber shape also influences the suspension structure, as the concen-
tration at which fibers begin to flocculate decreases with increasing fiber curvature
(for U-shaped fibers). Other parameters have a weaker influence on the suspension
structure. Kinetic (sliding) friction and weak attractive forces have little effect on the
structural behavior of fiber suspensions (for the ranges of parameter values investi-
gated). Anisotropic bending tends to shift the onset of flocculation to larger values
of the coefficient of static friction.

The main limitation of this approach is the computational demand. The max-
imum allowable time step (for obtaining stable, accurate solutions to the DAEs)
decreases with increasing fiber stiffness, which limits simulations with many fibers to
relatively small stiffnesses, well below that expected in many practical situations of
interest. Improving the computation speed will not only allow us to investigate more

realistic fiber stiffnesses, but also to investigate a greater range of parameter space.
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Chapter 4

Fiber floc dispersion

4.1 Introduction

In the processing of wood pulp to make paper, one desires a homogeneous dispersion
of fibers to aid in producing a uniform product. However, fibers in flowing suspensions
tend to aggregate or form flocs, leading to undesirable, heterogeneous suspensions. In
this chapter, we employ fiber-level simulations to investigate the dispersion of fiber
flocs in various linear flow fields.

Mason [55] described flocculation as a dynamic equilibrium process dominated
by fiber collisions, where fibers continually enter and leave flocs. Meyer and Wahren
[58] theoretically examined the elastic properties of fiber networks. They showed that
the strength and elasticity of fiber networks are affected by fiber flexibility and the
number of contacts a fiber experiences with other fibers in the suspension. Soszynski
and Kerekes [81, 82] extended this idea to identify a mechanism for fiber flocculation
called elastic fiber interlocking. Fibers in flowing suspensions deform as a result
of viscous and interfiber forces. As bent fibers attempt to regain their equilibrium
shapes, they can become locked in elastically strained configurations by contacts with

other fibers. It is the combination of flexibility and frictional interactions that help
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to form flocs as well as to make them coherent. Other factors such as suspension
viscosity [101], shear rate [39], fiber length [81, 82], and suspension concentration [45]
all impact floc formation and structure.

Turbulent flow is most often used to try to create a homogeneous suspension.
The disruption of flocs results from supplying sufficient energy to break the contact
points in the network of fibers. Andersson [4] developed an expression for the proba-
bility of floc rupture in turbulent flow of pulp suspensions which was based on knowing
the tensile stress exerted on the network of fibers. Takeuchi et al. [85] studied the de-
struction of flocs in a turbulent flow and found that the rate of destruction increased
with increasing flow velocity. Kerekes [43] examined floc behavior in a converging
channel to approximate elongational flow. Flocs in this flow tended to stretch and
then rupture rather than shear apart.

Floc dispersion has been characterized as occurring at two levels—global scale
disruption and small scale surface erosion [52]. Global scale disruption accounts for
large visual changes such as a floc splitting into smaller secondary flocs (doublets),
elongating into string like structures, or simply disintegrating into individual fibers.
Surface scale erosion is the loss of individual fibers from the surface of the floc. This
type of disruption can occur over the entire surface of the floc and is attributed to
shearing forces. Flocs may disperse at some level between the global and surface
erosion limits, which is referred to as “shedding” [52]. Shedding involves the loss of
small bunches of fibers from a floc, in which the rate of fiber loss from the floc is
approximated by an exponential decay process.

The mechanism of floc disruption—whether by shear or tensile forces—is diffi-
cult to observe in experiments, as suspensions are often opaque. An alternative is to

use simulation methods to understand floc dispersion, in which individual particles
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can be tracked and the parameters of the suspension are easily varied. Numerous
researchers have simulated suspensions of rigid fibers modelled as prolate spheroids
[20] or cylinders that interact hydrodynamically [28, 98]. Sundararajamumar and
Koch and Harlen et al. [35, 84] simulated the flow of suspensions of rigid cylinders
that interacted via mechanical contacts. They found that contact forces were very
important in determining the motion of the rods, and that hydrodynamic interactions
between fibers were less important as the concentration and number of contacts per
fiber increased.

Rigid fiber simulations, however, have not reproduced flocculation behavior
in fiber suspensions. Ross and Klingenberg [71] developed a model to simulate the
motion of flexible fibers represented by linked prolate spheroids. Schmid et al. [75]
further refined this model to examine the behavior of suspensions of linked sphero-
cylinders that interact through frictional contacts. By including flexibility, deformed
equilibrium shapes, and friction, the simulations produced flocculated states for fiber
suspensions in simple shear flow in the absence of attractive interfiber forces.

In this chapter, a dynamic, particle-level simulation technique similar to that
developed by Schmid et al. [75] and presented in Chapter 2 is employed to study the
disruption of fiber flocs in three linear flow fields—simple shear, uniaxial extension
and planar extension. The model and simulation method are described briefly in the
following section. Flocs were formed by simulating suspensions in simple shear. Flocs
that formed were then extracted from the suspension and placed in an unbounded
flow field to observe the disruption of isolated flocs. The results of these simulations
are presented in Section 4.3. The rate and extent of disruption depends on numer-
ous variables, including fiber stiffness, the fluid viscosity, the ambient deformation

rate, and the coefficient of interfiber friction, as well as the nature of the flow field.
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Flocs in simple shear flow disperse completely, but more slowly than that observed
in extensional flows of similar deformation rates. However, flocs in extensional flows

tend to disperse incompletely, leaving behind secondary flocs that contain numerous

fibers.

4.2 Simulation method

Flexible fiber suspensions are modelled as neutrally-buoyant chains of linked rigid
bodies immersed in a Newtonian liquid. The model includes realistic features such as
fiber flexibility, irregular equilibrium shapes, and mechanical contact forces between
fibers. The model and simulation method are similar to that employed by Schmid et
al. [75] and are described in more detail in Chapter 2

Each fiber in the suspension is represented by N, rigid cylinders (length 2/,
radius b; overall length L = 2{N,) with hemi-spherical end caps, connected end-to-
end by ball and socket joints (Fig. 4.1). The motion of the fiber segments is described
by Newton’s laws of motion in which we neglect fiber inertia. The force balance on
a fiber segment 4 includes contributions from hydrodynamic drag (F1¥®), mechanical

con

contact forces (F§"), and forces at each joint that maintain the segment connectivity

(XZ>7

N,
X X Y F <0 )
k
where N¢, is the number of contacts on fiber segment 7. The torque balance on fiber
segment ¢ includes similar contributions with the addition of a restoring torque at
each joint (Y;),

Ne,
T+ Yo — Y, + 0y x (X + X4 + Z (G x F"] =0, (4.2)
k
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contact ik

Figure 4.1: Schematic diagram of a model fiber composed of rigid spherocylinders
linked by ball and socket joints. Here, segment ¢ is in contact with segment & from
another fiber.

where T?yd is the hydrodynamic torque, p; is the orientation vector of the segment,
and Gy is a vector from the center of segment ¢ to the point of contact with segment
k.

In this model, hydrodynamic forces and torques are treated in the small Reynolds
number limit in order to investigate the effects of viscous forces on floc dispersion. Hy-
drodynamic interactions are neglected based on simulations performed by Sundarara-
jakumar and Koch and Harlen et al. [35, 84]. This assumption allows us to evaluate
the hydrodynamic force and torque as that on an isolated body, F** = A; - [U® — 1]
and T?yd =C; [Q° —w] + H, : E®°, where the resistance tensors A;, C;, and IA:Iz
for the spherocylinder segments are approximated by the resistance tensors of a pro-

late spheroid with an equivalent aspect ratio r. = 0.7r,/Nse, (see Chapter 2), where

r, = L/2b is the aspect ratio of the entire fiber. The ambient velocity U$®

2°, angular

velocity €277, and rate of strain tensor E* are evaluated at the center-of-mass of each
segment. The segment translational and angular velocities are r; and w;, respectively.

The restoring torque Y; describes the resistance of the elastic fibers to bending
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and twisting. The bending and twisting components of this torque are assumed
to be linear in the difference between the bending and twisting angles (6; and ¢;

respectively) and their equilibrium values (6;* and ¢;?),
|YZ| = Kb(ei - Qieq) + ’{t(qbi - qu)a (43)

where x;, and k; are the bending and twisting constants of the fiber. The bending
constant is related to the stiffness of the fiber material by k, = EyI/2¢, where Fy is
the Young’s modulus, and I = wb*/4 is the area moment. The twisting constant is set
to Ky = 0.67ky in this study, equal to that of a linearly elastic circular cylinder with
a Poisson’s ratio of 0.5. The fiber flexibility is characterized by a single parameter
which we call the effective stiffness S = EyI/n,yL*, where 1, is the suspending
fluid viscosity, ¥ = (2E> : E*)"/2 is the deformation rate, and L is the total fiber
length.

The fiber segments remain connected by applying a constraint for each joint,
r; +{p; = riy1 — (Pit1, (4.4)

where r; is the position of the center of segment i. These constraint equations allow
for the solution of the constraint forces at each joint X;. Since the segments are rigid
and remain connected, the fibers are inextensible (but still flexible).

Fibers experience mechanical contacts with other fibers in the suspension. Two
fiber segments ¢ and k are considered to be in contact if the separation between their
surfaces, h;p, is less than 0.33b. The force that results from each contact is decomposed
into two components—a force in the normal direction of the contact (F}) and a
frictional force (Fi¢) in the plane of the contact. The purely repulsive normal force
exerted on segment ¢ by segment k is modelled as F?}C = —Fexp|—ah;|n;, where ng

is the unit normal vector directed from segment i to k, F' = 9007n,lb% is the repulsive
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force magnitude, and a = 20/b. The friction force is determined by the constraint of

no relative motion in the plane of contact,
Ay, - ele
Auy, - el | =0, (4.5)
Fic - ny,

where Auyy is the relative velocity between segments ¢ and k£ at the point of contact,

and the plane of contact is defined by the vectors el°® and el’°. The calculated friction

force is then subjected to a Coulombic friction law of the form

|Firic| < ;5% |FY| = contact remains intact

i i Auyy
> lustat Fi\f = Fgrlc _ lukln Fi\l 7 4.6
Pl = i = ponjpy 2o (4.6)
where g2t and g% are the static and kinetic coefficients of friction. In this chapter,

pkin = 0 for all results reported.

The equations of motion and the constraint equations for all of the fiber seg-
ments in the suspension can be expressed as a system of differential algebraic equa-

tions (DAEs) for the unknown coordinates and constraint forces,
q-F(q,A) = 0,
¥(q) = 0, (4.7)
E(q,q,A) = 0,

where q is a vector containing the generalized coordinates of each fiber segment (po-
sitions and orientations), and A is a vector containing all the constraint forces (X and
F) in the suspension. If the segment orientations are represented by Euler param-
eters [92], there are 7N, Ny equations of motion to be solved. The inextensibility
constraint [Eq. (4.4)], represented by the vector W, is made up of 3Ngp(Ngeg — 1)
constraint equations that depend on only the positions and orientations. The 3Ng

friction constraint equations [Eq. (4.5)] are contained in E, where N¢ is the total

number of contacts in the system.
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4.2.1 Creating flocs

Simulations to form flocs are performed by randomly placing fibers at their equi-
librium shapes into a simulation cell of size ((L)3, where ¢ is the cell size scaling
factor that ranges from ¢ = 1.5-4. A linear shear field is imposed on the suspend-
ing fluid [U* = (42,0,0)], and periodic boundary conditions are applied with the
Lees-Edwards modification for sheared systems [1] to simulate an infinite suspension.
Determining the motion of the fibers requires the solution of the system of DAEs in
Eq. (4.7). An approximate solution method was developed to solve this system, the
details of which are presented in Chapter 2.

Fiber flocs were observed to form in simulations under a variety of conditions,
the details of which are described by Schmid et al. [75] and in Chapter 3. The
suspensions were sheared until a steady-state structure persisted for a strain v > 500,
which was identified by monitoring the average number of contacts per fiber. In this
chapter, all of the flocs tested were formed using fibers with Ny, = 5, aspect ratio
r, = 75, effective stiffness S°® = 0.05, and coefficient of friction p**** = 20. The
equilibrium shape of the fibers was either U-shaped (6°%, ¢*1) = (0.6,0) or helical
(6°9, ¢°9) = (0.8,0.7), examples of which are illustrated in Fig. 4.2.

In suspensions that formed flocs, the number of fibers in each floc was counted.
The floc with the most fibers was designated as the test floc, and all of the other fibers
in the suspension were removed. The test floc was then subjected to a linear flow
in which the periodic boundary conditions were eliminated, thus leaving the test floc
in an unbounded flow field. Figure 4.3 illustrates an example of a floc formed with
periodic boundary conditions as well as the extracted test floc in an unbounded shear
flow.

The flocs were put in three different linear ambient velocity fields U, to
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Figure 4.2: Examples of equilibrium shapes for U-shaped fibers (64, ¢*1) = (0.6, 0)
and helical fibers (°9, 1) = (0.8,0.7) from two perspectives.

Floc created with
periodic boundary
conditions

Extracted flocin
unbounded shear flow

Figure 4.3: Flocs are created in a suspension with periodic boundary conditions and
the largest floc is extracted to an unbounded linear flow to observe disruption.
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observe floc dispersion: simple shear flow,

soﬁear = ﬁ/ (Z7 07 O>7 (4.8)
uniaxial extensional flow,
3
1C;<I>1i. = %E (21’, -y, _2)7 (49)
and planar extensional flow,
o, = 55 (2,0, —2), (4.10)

where 7 is the shear rate and ¢ is the extension rate. Equation (4.8) describes simple
shear flow in which the fluid flows in the z direction with a velocity gradient in the
z direction. The expressions in Eqgs. (4.9) and (4.10) represent extensional flows,
in which the extension is in the x direction. Uniaxial extensional flow is similar
to a filament of fluid that is being extended due to forces exerted on the ends, while
planar extensional flow is similar to the elongation of a sheet of fluid by forces exerted
on opposite ends. The coefficients of the velocity components are chosen such that
the magnitude of the rate of deformation (2E> : E*®)!/2 where E® = 1[VU> +
(VU*)T], is the same for each flow field. Thus, the effective stiffness is defined
Seft = BEyI/n,yL* for simple shear flow, and S = EyI/n,éL* for uniaxial and

planar extensional flows.

4.3 Results and discussion

4.3.1 Simple shear flow

Isolated flocs placed in unbounded shear flow rotate, and shed individual fibers or

small groups of fibers. Dispersion of a typical floc in simple shear flow is illustrated
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Figure 4.4: Snapshots of the largest fragment of a floc in a simple shear flow field at
various strains (NJ, = 69, r, = 75, S°T = 0.05, 6°4 = 0.6, ¢4 = 0, p**** = 20).

in Fig. 4.4, where the snapshots of the largest portion of the floc at different shear
strains (y = 4t) are shown (N, is the initial number of fibers in the floc). Floc
dispersion is apparent as the number of fibers in the floc decreases with increasing
strain (fibers that have been carried more than a few fiber lengths away from the
main floc are not shown). Flocs also deform like an elastic body, compressing and
stretching as the structure rotates in the flow. Almost all fiber loss occurred as the
fiber stretched in the direction of maximum tension—the primary principal direction
of E* which lies at 45° measured from the z-axis toward the z-axis.

The rate of floc dispersion is a function of the characteristics of the fiber, the
fiber interactions, and the suspending fluid. The relative magnitudes of the elastic
and viscous torques exerted on the fiber segments are characterized by the effective
stiffness, S°% = EyvI/n,¥L*, and the frictional interactions are characterized by the
static coefficient of friction, p5**,

The effects of varying the stiffness and coefficient of friction on floc dispersion
in unbounded simple shear are demonstrated in Fig. 4.5, where the fraction of the
initial number of fibers remaining in the floc Ny, /N, , is plotted as a function of strain
7 for different values of S and p*t2. The floc was originally formed with S°F = 0.05

stat

and u = 20, and the equilibrium configuration of the fibers is U-shaped with

(6°4, %) = (0.6,0). As S°T decreases, the floc disperses more rapidly as illustrated
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Figure 4.5: Fraction of the initial number of fibers (U-shaped) remaining in the largest
floc fragment as a function of strain for various values of (a) S°f (with ptat = 20)
and (b) g (with S°f = (.05) in unbounded simple shear flow (N§, = 69, 6°4 = 0.6,
5 =0),

in Fig. 4.5(a). This indicates that increasing the viscous stress (7,7) or increasing
fiber flexibility (1/Ey ) causes flocs to disrupt faster. Similarly, the floc disperses

more rapidly as pst

is decreased, as illustrated in Fig. 4.5(b). Lee and Brodkey
[52] examined disruption of isolated wood fiber flocs in turbulent shear flow. At low
viscous stress levels, the characteristic length of the flow was much larger than the
floc size, and thus the flow could be approximated by simple shear. Lee and Brodkey
observed that flocs dispersed by shedding single fibers or small clumps of fibers, and
increasing the viscous stress level in suspension increased the rate of dispersion, as
observed in the simulations.

stat

The effects of varying S and p**** on the rate of floc break-up for a larger floc
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Figure 4.6: Fraction of the initial number of fibers (helical) remaining in the largest
floc fragment as a function of strain for various values of (a) S° (with ps*** = 20) and
(b) w2t (with S°f = 0.05) in unbounded simple shear flow (N§, = 114, 6°4 = 0.8,
¢*1 = 0.7).

of helical fibers (6°9, ¢°%) = (0.8,0.7) are illustrated in Fig. 4.6(a) and (b), respectively.
At small strains (7 < 130), the flocs composed of fibers with S°f = 0.5 and 0.05
disperse at approximately the same rate, in contrast to the behavior illustrated in
Fig. 4.5(a) (the floc containing fibers with ST = 0.005 still disperses more rapidly).
This change in behavior appears to be indicative of run-to-run variations in structure,
rather than nonmonotonicity in the stiffness dependence of the rate of dispersion; i.e.
numerous simulation runs show that, on average, the rate of dipersion increases as
Se decreases. Fig. 4.6(b) illustrates that the rate of floc break-up increases with

decreasing p*%* for the helical fiber floc over the entire range of strains, as described

previously for the U-shaped fiber floc.
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Fibers that are elastically strained within flocs give the floc strength through
frictional forces, which are proportional to the normal forces, and the normal forces
are in turn increasing functions of fiber stiffness. The association of elastically inter-
locked fibers to floc coherence has been demonstrated experimentally by Soszynski and
Kerekes [82]. They formed strong flocs of nylon fibers, and then heated the flocs past
the glass transition temperature of nylon, thus lowering the bending stresses in the
fibers. These heat-treated flocs were observed to disperse with a small amount of agi-
tation, while flocs that were never heated required substantially stronger agitation to
be dispersed. This is consistent with the simulation results, where decreasing the fiber
stiffness increases the rate of dispersion. By lowering the coefficient of friction in sim-
ulations, the flocs also disperse more readily, consistent with the elastic-interlocking
picture of floc coherence, where the strength of interfiber contacts is controlled by

both fiber stiffness and interfiber {riction.

4.3.2 Extensional flows

Simple shear flow always completely disperses isolated flocs in the simulations. Most
of the floc disruption occurs while the floc is in a state of maximum tension, which
suggests that extensional flow fields may be more effective for dispersing flocs. Flocs
that were formed with helical fibers (6°9,¢*9) = (0.8,0.7) were placed in uniaxial
extensional flow, as defined by Eq. (4.9). When the fibers are sufficiently flexible
(S = 0.005), the flocs experience a global level of disruption in which they are
literally torn apart by tensile forces exerted by the fluid, as illustrated in simulation
snapshots in Fig. 4.7(a). After only a strain of ¢ = &t = 20, the floc with S°f = 0.005
has less than 20% of the original number of fibers left. If the effective stiffness is

increased to S° = 0.5, the floc remains coherent, and deforms into an elongated
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Figure 4.7: Snapshots of fiber floc structures in uniaxial extensional flow with (a)
Sef = 0.005 and (b) ST = 0.5 at various strains (04 = 0.8, ¢*4 = 0.7, u**** = 20).
structure in which only a few fibers are lost, as illustrated in Fig. 4.7(b). Lee and
Brodkey [52] observed similar behavior in highly turbulent shear flow. Kerekes [43]
noted the elongation of wood fiber flocs as they entered a converging channel. This
type of behavior was also observed for simulated flocs with U-shaped fibers (64, ¢*4) =
(0.6,0).

When the uniaxial extensional flow is stopped in the simulations, the flocs
that remain intact partially recoil into a new floc shape due to the stored elastic
energy in the stretched fibers. This is in contrast to the observation of Lee and
Brodkey [52] in which elongated flocs did not appear to recoil upon cessation of flow.
This discrepancy may be caused by the floc recoil being too insignificant to detect
experimentally, but is easily measured in simulations. Kerekes [43] also observed
that flocs elongated as they flowed into a converging channel, which approximates
extensional flow. Experiments showed that flocs only ruptured if the extension rate
was large, where the extension rate was defined as the velocity difference between
the large and small cross-sections of the channel divided by the height of the small

channel. Large extension rates correspond to smaller values of S, which are indeed
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observed to enhance floc dispersion in the simulations.

The initial time scale for disruption of a helical fiber floc is much smaller for
extensional flow than for simple shear flow. The fraction of fibers left in the floc is
plotted as a function of strain in Fig. 4.8 for flocs with (04, ¢, p***) = (0.8, 0.7, 20),
for uniaxial extensional flow with various values of S°, as well as for shear flow
with S°f = 0.05. Flocs in uniaxial extension are stretched and broken into smaller
secondary flocs very quickly, relative to shear flow. The size of the largest secondary
floc decreases as the effective stiffness decreases. Flocs in uniaxial extensional flow
generally do not completely disperse, leaving a secondary floc with fewer fibers than
the original floc, that is stretched out into a string-like shape. In contrast, flocs in
shear flow always disperse completely, but take longer to reach the ultimate level of
disruption observed in uniaxial extension. The reason that flocs in shear flow disrupt
completely is likely related to the many conformations the floc assumes as it tumbles.
Flocs in shear flow are constantly being stretched and compressed as they rotate in
simple shear, which allows fibers to assume configurations that may be favorable for
breaking contacts. In extensional flow however, the floc does not rotate and contacts
become stronger as the floc is compressed in the two directions normal to the direction
of elongation.

Figure 4.9 illustrates the rate of disruption of isolated flocs made up of U-
shaped fibers [(6°%, ¢4, i5%) = (0.6, 0, 20)] for uniaxial extensional flow with various
values of S, as well as for simple shear flow with S°® = 0.05. As with the helical
fiber flocs, the extensional flow causes global disruption of the U-shaped fiber flocs
very quickly, resulting in smaller secondary flocs that remain intact. In this case,
the secondary flocs that remain intact are larger than the secondary helical fiber

flocs at equivalent stiffnesses. This may be attributed to the differences in fiber
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Figure 4.8: Fraction of the initial number of fibers (helical) in the largest floc fragment
as a function of strain for dispersion in uniaxial extensional flow for various values
of S, compared to that for shear flow with ST = 0.05 (Nf, = 114, §°¢ = 0.8,
¢°1 = 0.7, p**t = 20).

equilibrium shape, but may also be due to differences in the initial structures. Many
more simulations need to be performed to discern such effects.

Behavior in planar extensional flow is qualitatively similar to that observed
in uniaxial extensional flow. Flocs are stretched and experience global disruption in
which large fragments are torn off due to tensile forces exerted by the fluid on the floc.
Planar extensional flow appears to result in steady-state structures with fewer fibers
than in uniaxial flow. The time scale of disruption, however, is 4-5 times longer for
planar extensional flow, as shown in Fig. 4.10, in which the fraction of fibers remaining
in the largest floc fragment is plotted as a function strain for a floc of U-shaped fibers
in planar and uniaxial extension at two different values of S°®. The difference in final

structures of the secondary flocs in the two extensional flows appears to arise from of

the compressive nature of the flow fields. Uniaxial extensional flow has inward flow in
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Figure 4.9: Fraction of the initial number of fibers (U-shaped) in the largest floc
fragment as a function of strain in uniaxial extensional flow for various values of
Seft compared to that for simple shear flow with S°% = 0.05 (N§, = 106, 6°¢ = 0.6,
¢oa = 0, ptat = 20).

the y and z directions with extension in the x direction which compresses the floc into
a tightly bound string-like structure. Flocs in planar extensional flow only experience
compression due to inward flow in the z direction resulting in elongated “sheet-like”
structures with larger surface areas, in which fibers can more easily escape the faces
and edges by surface erosion or shedding. Qualitatively similar behavior is observed
for flocs made of helical fibers.

As with flocs in shear flow, the strength of the flocs in extensional flow is a
function of the effective stiffness and static coefficient of friction. The relationship
between these parameters has been investigated by identifying the critical values that
induce floc break-up in uniaxial extensional flow. We define a floc as dispersed when
less than 25% of the initial number of fibers remain in the largest floc fragment

(Nan/N§, < 0.25). The smallest value of p5*** required to maintain Ng,/N§, > 0.25
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Figure 4.10: Fraction of the initial number of fibers (U-shaped) in the largest floc
fragment as a function of strain for dispersion in planar and uniaxial extensional
flows for various values of S°T; (N§, = 106, 6°¢ = 0.6, ¢°4 = 0, ps** = 20).

after exposing the floc to extensional flow to a strain of ¢ = 300 is defined as a critical

stat

stat " which is a function of S°f. The critical coefficient of

coefficient of friction, pu
friction is plotted as a function of S° in Fig. 4.11 for flocs composed of U-shaped fibers
(0°4,¢%1) = (0.6,0). The critical coefficient of friction decreases as the fiber stiffness
increases. This is again consistent with the elastic fiber interlocking mechanism of floc
coherence, in which interfiber contact strength is determined by both fiber stiffness
and interfiber friction.

Coeflicients of friction reported for cellulose fibers and other cellulose systems
are significantly smaller than those employed here (p5** & 0.5 [79, 99]). However, the
values for the effective stiffness tend to be larger than those employed here. Using a
value for the fiber stiffness of cellulose fibers in the range obtained by Tam Doo and

Kerekes [86] (EyI =~ 10712 Nm?), effective stiffnesses for sheared fiber suspensions

in water at a typical experimental shear rate (¥ =~ 10), are (S°").. > 1. Thus,
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Figure 4.11: Critical values of S°f and p**2* in uniaxial extensional flow in which flocs

remain coherent (N, = 106, 6°¢ = 0.6, ¢°1 = 0).

stat

Fig. 4.11 suggests that more realistic values of S and ;#*® should indeed be capable
of maintaining floc coherency. Unfortunately, the current simulation method requires
a very large amount of computation time to directly evaluate fiber suspensions and

flocs of such large effective stiffnesses (S > 1), because the time step required for

integrating the equations of motion decreases with increasing S°f.

4.4 Conclusions

A dynamic, particle-level simulation technique has been employed to study the dis-
persion of fiber flocs in various linear flow fields. The model fiber consists of linked,
rigid sphero-cylinders connected with flexible ball and socket joints that allow for
the fiber to be of a deformed equilibrium shape. Fibers interact with one another

via short-range repulsion and interfiber friction. Flocs were formed in simulations of
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simple shear flow with periodic boundary conditions. Individual flocs were identi-
fied, extracted, and placed in unbounded linear flow fields (i.e., simple shear, uniaxial
extension, and planar extension) to observe floc disruption.

The isolated flocs were observed to disperse at varying rates in the different flow
fields. Simple shear flow completely breaks up flocs by shedding clumps of fibers from
the main floc when aligned with the direction of maximum tension. Extensional flows
initially disrupt flocs much faster than in simple shear flow; this rapid dispersion
regime is then followed by a period in which the remaining floc fragments remain
intact. The size of the remaining floc fragments decreases as the fiber stiffness or
coefficient of friction are decreased. For all flows, the rate of dispersion increases
as the stiffness or coefficient of friction are decreased. The observations reported
here are consistent with numerous experimental results, and support the elastic fiber

interlocking mechanism of floc coherence proposed by Soszynski and Kerekes [81, 82].
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Chapter 5

Rheology of flexible fiber

suspensions via simulations

5.1 Introduction

Suspensions of non-Brownian fibers are found in a variety of applications, such as
pulp and paper and fiber-filled composites processing. Fiber suspensions exhibit non-
Newtonian fluid characteristics similar to polymer melts and solutions, such as the
Weissenberg effect (i.e., rod-climbing) [57, 61], shear thinning [34, 50], and viscoelas-
ticity [87, 91]. Rheological properties, as well as other macroscopic quantities, depend
on the structure of the suspensions. The structure is affected by such features as the
fiber properties, interactions, suspending fluid properties, and the imposed flow field.
Understanding the relationships among these features, the suspension structure, and
the macroscopic properties can therefore aid in the design and optimization of pro-
cesses and products. In this chapter, we employ the simulation method described in
Chapter 2 to probe the relationships between fiber properties, interactions, suspension

structure and the rheological properties of fiber suspensions in shear flow.
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Adding fibers to a fluid can significantly alter its flow properties. Shear thin-

ning of long fiber suspensions (aspect ratio r, = L/d > 100, where L and d are the
fiber length and diameter, respectively) was reported by Kitano and Kataoka [50]
for vinylon fibers in silicone oil and by Goto et al. [34] for nylon, glass, and vinylon
fibers in glycerin. Goto et al. observed that shear thinning became more pronounced
as the fiber aspect ratio increased or the flexibility increased (flexibility oc 1/FEy,
where Fy is the fiber Young’s modulus). These researchers also reported first normal
stress differences that were similarly influenced by fiber aspect ratio. The rheology
of short glass fiber suspensions (r, < 50) was investigated by Petrich et al. [64]. The
viscosity increased nearly linearly with concentration, consistent with predictions for
noninteracting fibers from slender body theory [6]. Chaouche and Koch [18] observed
shear thinning for suspensions of short nylon fibers in various silicone oils at very
low shear rates. They attributed the shear thinning behavior to adhesive contacts
between fibers, and measured adhesive forces on the order of 0.01 uN. None of these
researchers reported on the effect of fiber shape on rheological properties. Glass fibers
tend to be straight, while nylon and vinylon fibers often have permanent deformations.
Meyer and Wahren [58] proposed that sufficiently concentrated fiber suspen-

sions form networks of contacting fibers that exhibit viscoelastic properties. Thalén
and Wahren [87] measured the shear modulus of pulp suspensions and obtained re-
sults in qualitative agreement with the simple network theory of Meyer and Wahren
[58]. A sufficient force must be applied to the suspension to overcome the contact
forces and cause the suspension to flow, and this behavior is characterized by a yield
stress. The yield stress of various wood and nylon fiber suspensions was measured
by Bennington et al. [12]. The yield stress (o) scaled with the volume fraction ()

as 09 ~ ®° where the exponent /3 varied from 2.5-3.5. This is consistent with the
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simple fiber network theory of Meyer and Wahren [58] which gives 5 = 3. However,
the measured values of (# varied with fiber elasticity and aspect ratio, which is not
predicted by the simple network theory. The dependence of the yield stress on fiber
elasticity was significantly different for suspensions of wood fibers and nylon fibers.
Bennington et al. suggested the wood fibers have rougher surfaces than nylon which
leads to different contact dynamics. Kitano and Kataoka [50] also measured yield
stresses for suspensions of vinylon fibers in silicone oil. The exponent [ decreased
as the aspect ratio increased, which was attributed to fiber interactions, increased
apparent flexibility, and wall effects.

Suspensions of flexible fibers often flocculate, forming heterogeneous structures
called flocs that affect the flow characteristics of the suspension. Soszynksi and
Kerekes [82] suggested that fiber flocs are mainly formed by mechanical contacts.
They proposed a mechanism for fiber flocculation called “elastic fiber interlocking”
in which fibers become locked in strained configurations due to their elasticity and
friction forces at fiber contacts which serve to strengthen the network. Chen et al. [19]
measured the stress in wood and polyethylene terephthalate (PET) fiber suspensions
that were observed to flocculate. At low shear rates, the suspensions behaved as
Newtonian fluids. As the shear rate was increased, the suspensions would begin to
flocculate which corresponded to jumps in the the shear stress. As the shear rate
was increased further, the flocs began to disappear and the fluid again exhibited
Newtonian behavior.

The stress in a suspension of fibers is related to the distribution of fiber po-
sitions and orientations. The bulk average stress (o) for a suspension of fibers in a
Newtonian fluid is [7]

(o) ~ —pd + 2n,E* + 0P, (5.1)
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where p is an isotropic pressure, d is the identity tensor, E* is the rate of strain
tensor of the imposed flow field, 7, is the suspending fluid viscosity, and &P is the
particle contribution to the average stress. The particle contribution to the stress
can be divided into two parts: (1) a particle-fluid interaction, and (2) a particle-
particle interaction contribution which results from non-zero hydrodynamic forces on
the fibers. Batchelor [6] derived an expression for the particle stress using slender
body theory for dilute suspensions of rigid, straight fibers that interact only via
hydrodynamic disturbances,

3
b TnonL

o’ ~ 6In(2r,) (PPPP) — 1<PP>5 tE% (5.2)

3

where n is the number of fibers per unit volume, L is the fiber length, and p is
the unit fiber orientation vector. Slender-body theory can be used more generally to
approximate the particle stress for suspensions of hydrodynamically interacting fibers

into the semi-dilute regime (nL? > 1),

o = 5 / D)+ F(s)p — 2(sp B3] a (53)

—t
+ FYr 4 rF" - %(FH : r)6> ,

where FH is the net hydrodynamic force on a fiber, r is the fiber center-of-mass, and
F(s) is the hydrodynamic force per unit length acting on the fiber at axial position
s. The quantity F(s) depends on the geometry of the particle, properties of the
suspending fluid, and the orientation of the fibers in the flow field. The integral in the
above equation represents the purely hydrodynamic contribution to the particle stress
[54], and the remaining terms arise from the non-hydrodynamic particle interactions
[84].

Particle-level simulations are a common method for probing particulate sus-

pensions, and more specifically, for understanding the relationships between particle
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properties and interactions, the suspension microstructure, and macroscopic behavior
(see, for example, Bossis and Brady [14]). The equations of motion for each particle
are solved numerically, subject to the forces and torques identified, in order to evolve
the particle positions and orientations in time and thus produce a prediction of the
suspension microstructure. This method is sufficiently general to allow the inclusion
of a variety of features, such as elongated and flexible particles, as well as various
forces, such as hydrodynamic forces and interactions, colloidal forces and friction, to
name a few. The complexity of the physical model is only limited by the computa-
tional resources required to evaluate the forces and torques and solve the equations
of motion.

Numerous fiber suspension studies have focused on rigid, elongated bodies in
Newtonian fluids. Claeys and Brady [20, 21] modelled fibers as rigid prolate spheroids
(ellipsoids of revolution). They developed a method for accurately evaluating the
hydrodynamic forces and torques, including both the short-range hydrodynamic in-
teractions (lubrication forces) as well as the long-range, many-body hydrodynamic
interactions. Mackaplow and Shaqfeh [54] employed slender-body theory to accu-
rately evaluate the long-range hydrodynamic interactions between prolate spheroids
or cylinders. As with the method of Claeys and Brady, the calculations were so
computationally demanding that results for suspensions of long fibers in simple shear
flow were limited to prescribed suspension structures. Thus, these methods were not
employed to predict the suspension structure resulting from flow. Simulations by
Yamane et al. and Fan et al. [28, 98] employed approximations for the hydrodynamic
interactions between rigid fibers. These authors obtained good agreement with ex-
perimental results for the suspension viscosity as a function of concentration, but did

not report shear thinning behavior (nL?® < 50, r, < 30).
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Sundararajakumar and Koch and Harlen et al. [35, 84] simulated suspensions
of rigid, slender rods interacting via contact forces. They argued that for flowing
suspensions of fibers, lubrication forces cannot prevent fibers from contacting, and
thus short-range hydrodynamic interactions were neglected. Harlen et al. [35] simu-
lated single spheres falling through neutrally-buoyant fiber suspensions to illustrate
the importance of fiber-fiber contacts on the flow properties of fiber suspensions. For
low concentrations, interfiber contacts are rare and the flow behavior is dominated
by long-range hydrodynamic interactions. However, as the concentration is increased
such that the fibers are in frequent contact, the flow behavior is strongly influenced
by the contacts. In fact, for nL®* > 12 (r, = 20), the drag on the settling sphere
calculated by including long-range hydrodynamic interactions and contact forces is
indistinguishable from that calculated by including contact forces alone (and in good
agreement with experimental results reported by Milliken et al. [59]). Although the
falling sphere influences the suspension structure, the authors did not report any
tendency toward fiber flocculation.

Several studies have focused on simulating suspensions of flexible fibers. Ya-
mamoto and Matsuoka [93, 94] modelled flexible fibers as chains of rigid spheres
connected through springs, with potentials to mimic resistance to bending and twist-
ing. Chain connectivity is maintained by constraints, producing equations that must
be solved simultaneously with the equations of motion. Ross and Klingenberg [71]
modelled flexible fibers as inextensible chains of rigid prolate spheroids connected
through ball and socket joints. This model eliminates the need for iterative con-
straints to maintain fiber connectivity, and can represent large aspect ratio fibers with
relatively few bodies. These features help to reduce computations, facilitating simula-

tion of concentrated suspensions. Schmid et al. [75] extended this method, modelling
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flexible fibers as chains of spherocylinders connected by ball and socket joints, that
interact via short-range repulsive forces as well as friction forces. They demonstrated
that fiber equilibrium shape, flexibility, and inter-fiber friction are important in deter-
mining the suspensions microstructure, and in particular for predicting flocculation
behavior.

In this chapter, we build on the method of Schmid et al. (details in Chap-
ter 2) to investigate relationships between fiber properties and interactions, and the
resulting suspension rheological properties for simple shear flow. In Section 5.2, we
briefly describe the flexible fiber model and simulation method. The model fiber con-
sists of rigid spherocylinders connected by ball and socket joints. The fibers interact
with other fibers via short-range repulsive forces and friction. Fiber and suspension
characteristics such as equilibrium shape, flexibility, aspect ratio, friction, concentra-
tion, and suspending fluid characteristics have been shown to impact the structure
of fiber suspensions in simulations (see Schmid et al. [75] and Chapter 3). Varying
these parameters can result in drastic changes to the suspension structure including
the formation of heterogeneities (i.e. flocs). In Section 5.3, we show that suspension
rheological properties also depend sensitively on these features. The dependence of
the shear thinning behavior and first normal stress differences on fiber aspect ratio is
similar to that observed in experiments. Calculated yield stresses exhibited a scaling
with concentration in agreement with network theory and experiment. Fiber suspen-
sions were also seen to flocculate under certain conditions, and this affected the shear

thinning behavior of the suspensions.
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5.2 Simulation method

Flexible fiber suspensions are modelled as chains of neutrally-buoyant, linked rigid
bodies immersed in a Newtonian liquid. The model includes realistic features such as
fiber flexibility, deformed equilibrium shapes, and mechanical contact forces between
fibers. The model and simulation method are similar to that employed by Schmid et
al. [75] and is described in more detail in Chapter 2.

Each fiber in the suspension is represented by Nge, rigid cylinders (length 2¢,
radius b) with hemi-spherical end caps, connected end-to-end by ball and socket joints
(Fig. 5.1). The motion of the fiber segments is described by Newton’s laws of motion
in which we neglect fiber inertia. The force balance on a fiber segment i includes
contributions from hydrodynamic drag (F1¥?), mechanical contact forces (F¢"), and

forces at each joint that keep the fiber at a constant length (X;),

Ne,
FY 4 X0 - X+ Y Ft =0, (5.4)

k
where N¢, is the number of contacts on fiber segment ¢. The torque balance on fiber
segment ¢ includes similar contributions with the addition of a restoring torque at

each joint (Y;),

Ne,
T?yd + Y - Y+ 0p x [ X + X+ Z (G x Fi"] =0, (5.5)
k

where T?yd is the hydrodynamic torque, p; is the orientation vector of the segment,
and Gy, is a vector from the center of segment 7 to the point of contact with segment
k.

In this model, hydrodynamic interactions are neglected based on results re-
ported by Sundararajakumar and Koch and Harlen et al. [35, 84|, as previously ex-

plained. This assumption allows us to evaluate the hydrodynamic force and torque as
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contact ik

Figure 5.1: Model fiber of rigid spherocylinders linked by ball and socket joints that
experience mechanical contacts with other fibers in the suspension.

that on an isolated body, F* = A; - [U® — ;] and T = C; - [Q° —w,] + H; : B,
where the resistance tensors A;, C;, and IZIZ are approximated with the resistance ten-
sors of a prolate spheroid with an equivalent aspect ratio, ro, = 0.7rp, (see Chapter 2),
where 1, is the aspect ratio of a segment. The ambient velocity, angular velocity,

00
7

and rate of strain tensor are U7°, €2°°, and E™, respectively, and only simple shear
flows are simulated [i.e., U® = (42,0,0)]. The segment translational and angular
velocities are 1; and w;.

The restoring torque Y; describes the resistance of the elastic fibers to bending
and twisting. The bending and twisting components of this torque are assumed

to be linear in the difference between the bending and twisting angles (6; and ¢;

respectively) and their equilibrium values (6 and ¢:9),
Y| = ru(0; — 0;%) + re(di — 6;7), (5.6)

where x;, and k; are the bending and twisting constants of the fiber. The bending
constant is related to the stiffness of the fiber material by x, = EyI/2¢, where Ey
is the Young’s Modulus, I = 7b?/4 is the area moment, and ¢ is the half length of

a fiber segment. The twisting constant is set to k; = 0.67k; in this study, equal to
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that of a elastic circular cylinder with a Poisson’s ratio of 0.5. The fiber flexibility
is characterized by a single parameter which we call the effective stiffness S =
EyI/n,/L* where n, is the suspending fluid viscosity, + is the shear rate, and L is
the total fiber length. The effective stiffness characterizes the relative importance of
fiber stiffness and hydrodynamic torque in determining the amount a fiber will bend
in shear flow. As S — 0, fibers behave like completely flexible threads, whereas for
Seft — o0, fibers become rigid and retain their equilibrium shapes during flow.

The fiber length is kept constant by applying a constraint for each joint,
r; +{p; = Tiy1 — {Piy1, (5.7)

where r; is the segment position. These constraint equations allow for the solution of
the constraint forces at each joint X;.

Fibers experience mechanical contacts with other fibers in the suspension. The
force that results from each contact is decomposed into two components—a force in
the normal direction of the contact (FY) and a frictional force (Fi¢) in the plane
of the contact. The purely repulsive normal force exerted on segment ¢ by segment
k is modelled as Fi\,i = —F exp[—ah;x]n;,, where h;, is the separation between the
surfaces of segments ¢ and k, n;; is the unit normal vector directed from segment i to
k, F' = 9007n,¢b¥ is the magnitude of the repulsive force, and a = 20/b. The friction
force is determined by the constraint of no relative motion in the plane of contact,

loc
Auyy, - e

Auy, e | =0, (5.8)
Fiic ny,
where Auyy is the relative velocity between segments ¢ and k£ at the point of contact,

and the plane of contact is defined by the vectors el°® and e, The calculated friction



136

force is then subjected to a Coulombic friction law of the form

|Flic| < S FN| = contact remains intact

. . Au;
> RN = FE = RN (59)
|Allik|
where p5** and pM" are the static and kinetic coefficients of friction. For all of

the simulation results presented in this chapter, the kinetic coefficient of friction is
pkm =0 (i.e., no sliding friction).

The equations of motion and the constraint equations for all of the fiber seg-
ments in the suspension can be expressed as a system of differential algebraic equa-
tions (DAEs) for the unknown coordinates and constraint forces,

q-F(q,A) = 0,
¥(q) = 0, (5.10)

E(a,q,A) = 0,
where the vector q contains the generalized coordinates of each fiber segment (posi-
tions and orientations) and A is the vector of constraint forces (X and F&¢) in the
suspension. If the segment orientations are represented by Euler parameters [92],
there are 7Ng, Ngeg equations of motion to be solved. The inextensibility constraint
[Eq. (5.7)], represented by the vector ¥, is made up of 3Ng(Nseg — 1) constraint equa-
tions that depend on only the positions and orientations. The 3N¢ friction constraint
equations [Eq. (5.8)] are contained in =, where N is the total number of contacts in

the system.

Simulations are performed by randomly placing fibers at their equilibrium
shape into a simulation cell of size (CL)? as illustrated in Figure 5.2, where ¢ is
the cell size scaling factor (( = 1.5-4). A linear shear field is imposed and periodic
boundary conditions are applied with the Lees-Edwards modification for shearing

systems [Allen and Tildesley (1991)], to simulate an infinite suspension. The fiber
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Figure 5.2: Example of the starting configuration of fibers randomly placed in a
periodic simulation cell.

motions are obtained by the numerical solution of the system of DAEs in Eq. (5.10).
An approximate solution method was developed to solve this system, the details of
which are found in Chapter 2.

The particle positions and orientations are postprocessed in order to calculate
the stress and other suspension properties. Using slender body theory, the extra

particle stress [Eq. (5.3)] may be simplified to the form (see Appendix A)

N,
4nl3n, [ ~=
o 3ln(27’p)<i§:1{ piPi + PiP PiPiP:P

(piPi + PiPi) +

3 1 o
72 ([5 - §pipi:| (U —1y)ri+

r {5 _ %pz-pz} (U - f,-)) }> T8, (5.11)

where T represents an isotropic contribution of no interest. Suspensions were sheared
for at least 500 strain units after reaching steady state. The particle stress for partic-
ular runs were averaged over all configurations saved after steady state was reached.
Most data reported in the following section are for single runs. Some runs were repli-
cated with different initial conditions; uncertainties estimated from the replicates are

indicated by error bars in the figures.
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Figure 5.3: Examples of U-shaped fibers (¢*d = 0, r, = 75) for various values of §°%.

5.3 Results and discussion

5.3.1 Effects of fiber shape and friction

In this section we investigate the effects of fiber shape and static friction on the shear
viscosity of fiber suspensions. Simple shear flow was simulated for suspensions of U-
shaped fibers (r, = 75, S°f = 0.05) at various concentrations and for several different
equilibrium bending angles and coefficients of friction. U-shaped fibers with different
equilibrium bending angles are illustrated in Fig. 5.3.

The specific viscosity 1y, = n/1, — 1 () = 0,./% is the suspension viscosity) is
plotted as a function of concentration (nL?) in Figs. 5.4(a) and (b) for suspensions of
U-shaped fibers. Results are presented for simulations of flexible fibers (S°T = 0.05,
rp =75, Neeg = 5) with 6°¢ =0, 0.1 and 0.3, as well as for straight, rigid fibers (r, =

75, Nseg = 1). Results for simulations without friction (u*** = 0) are represented by
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Figure 5.4: Steady-state specific viscosity as a function of concentration for suspen-
sions with fibers of different shapes and coefficients of friction.

open symbols, and results for simulations with friction (u**** = 20) are represented
by filled symbols. Fig. 5.4(b) illustrates data over wider ranges of concentrations
and specific viscosities than that presented in Fig. 5.4(a). The data points indicate
individual simulation runs in which the average value is computed from at least 500
steady state configurations. Uncertainties (95% confidence interval) estimated from
replicate simulations with different initial configurations are indicated by the error
bars.

Consider first the effect of fiber flexibility in the absence of friction in these



140
simulations, illustrated by the results for suspensions of rigid, straight fibers (open
circles) and the results for suspensions of flexible, straight fibers (open squares) in
Fig. 5.4(a). For both systems, 7, is small, and increases roughly linearly with con-
centration in agreement with previous simulations at relatively small concentrations
[84]. The linear dependence of the viscosity with concentration is consistent with the
predictions of slender body theory for dilute fiber suspensions. For an ambient flow
field U* = (92,0,0), the slender body theory prediction for the specific viscosity in

a dilute suspension of rigid rods is [6]

ey 5 S o A 5.12
=L o) (p2p?) (5.12)

For suspensions of non-interacting particles, the orientation distribution is approxi-
mately constant which suggests 7725 o nL?. Petrich et al. [64] also observed this type
of behavior in experiments of very stiff and straight glass fibers (S ~ 1) with an as-
pect ratio 1, = 72 at approximately the same concentration range as our simulations
(illustrated in Fig. 5.4).

The differences between the results for suspensions of straight, rigid fibers
and suspensions of straight, flexible fibers are very small, approximately equal to the
uncertainties. This is not unexpected, since the flexible fibers in this case are actually
quite stiff. For these simulations, the average deviation of the bending angles from
the equilibrium value is (|0; — 6°4|) = 6 x 10~%. Indeed, the degree of deformation for
all the runs depicted in Fig. 5.4 is quite small, and thus the results appear to represent
the behavior of stiff fibers ((|6; —0°4]) = 4.6x 1073 for #°4 = 0.1; (|0;—6°4]) = 1.6x 1072
for 0°¢ = 0.3). Effects of flexibility for suspensions of more flexible fibers are discussed
in Section 5.3.2.

Next consider the effect of fiber shape in the absence of friction, illustrated by

the results for straight, rigid and flexible fibers (open circles and squares, respectively),
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and U-shaped, flexible fibers (0°? = 0.1, open triangles) in Fig. 5.4(a). The specific
viscosities of the suspensions of U-shaped fibers are significantly larger than that
for the suspensions of straight fibers. At nL® = 40, 7, for the U-shaped fibers
is approximately twice as large as that for the straight fibers. We note that for
0% = 0.1, the fiber shape is nearly straight (see Fig. 5.3). Thus a small amount of
curvature can have a significant effect on the suspension viscosity.

The results presented in Fig. 5.4 also illustrate the impact of interfiber friction
on the shear viscosity. For suspensions of straight, rigid fibers, adding static friction
(5" = 20) does not alter the shear viscosity. For suspensions of straight, flexible
fibers, adding static friction produces a small increase in the specific viscosity. The
effect of static friction is much more pronounced for the U-shaped fibers. For nL3 >
30, adding static friction more than doubles the specific viscosity. In addition, the
concentration dependence changes from a linear dependence in the absence of friction
to a higher-order dependence with p*** = 20.

The viscosity of fiber suspensions is thus significantly influenced by both the
fiber shape and static friction. Furthermore, there is also an additional synergistic
effect of these features, as friction influences the viscosity of suspensions of U-shaped
fibers more than it influences the viscosity of suspensions of straight fibers. The
effects of fiber shape and friction are explored in more detail below.

The effect of shape on the specific viscosity of suspensions of U-shaped fibers
is further illustrated in Fig. 5.5, in which all other suspension properties are held
constant [(Ngeg, 7p, nL3, ST, ¢4, 1s%2) = (5,75,20,0.05,0,20)]. The specific viscosity
gradually increases as the fiber curvature increases (/°? increases). At a certain cur-
vature, #°4 = 0.5 for the conditions listed above, the specific viscosity undergoes a

large jump in value. This corresponds to the formation of fiber flocs in the suspen-
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Figure 5.5: Specific viscosity as a function of equilibrium shape of U-shaped fibers
after shearing for y = 1500 (Ngeg, 7p, nL3, ST, ¢4, pstat) = (5, 75, 20, 0.05, 0, 20).
sion. Further increases in the equilibrium bending angle also result in a flocculated
suspension and a gradual increase in ny,. The effect of flocculation on rheological
properties is discussed further in Section 5.3.4.

Deviations of the fiber shape from perfectly straight can influence the stress in
the suspension in several ways. Consider first dilute suspensions in which fiber rota-
tion dynamics are similar to that of isolated fibers. U-shaped fibers have a smaller
rotation period than straight fibers of the same aspect ratio, and thus spend a larger
fraction of the time out of the plane of shear. In addition, for U-shaped fibers, some
fiber segment orientation vectors p; will always have nonzero components normal to
the plane of shear (except in the rare situation in which the plane of the “U” lies
within a shearing plane), in contrast to straight fibers that spend most of the time
nearly aligned with the flow and contribute little to the suspension viscosity. These
features directly affect the hydrodynamic contribution to the stress represented by

the integral term in Eq. 5.3. Fiber shape can also influence the nonhydrodynamic
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contribution to the stress (represented by the terms containing products of FH and
r in Eq. 5.3) by impacting the frequency of contacts between fibers. The interfiber
contacts result in nonzero hydrodynamic forces F*, and thus more frequent contacts
are expected to increase the time-averaged stress. The contacts also affect the fiber
segment orientation distribution, indirectly influencing the hydrodynamic contribu-
tion to the stress. Fiber curvature indeed leads to an increased number of contacts.
For the simulation runs depicted in Fig. 5.5, the average number of contacts per fiber
at steady state (n.)ss increases from 0.03 for §°¢ = 0 to 1.12 for 4 = 0.3.

The increase in the number of contacts per fiber as the fiber curvature increases
arises from two features. The shorter rotation period of U-shaped fibers compared
to that for straight fibers of the same aspect ratio leads to more opportunities for
fiber contacts. U-shaped fibers also tend to sweep out a larger volume as they rotate,
further increasing the probability of contacting other fibers. These effects of shape on
the number of contacts per fiber should hold for any type of deviation from straight
shapes (i.e., U-shaped, helical, etc.).

stat

Figure 5.6 demonstrates the effect of changing p*'*" on the specific viscosity

of fiber suspensions with two different equilibrium shapes [U-shaped: (6%, ¢%1) =
(0.1,0); and helical: (6°9, ¢*9) = (0.8,0.7)] with all other parameters held constant

[(Neeg, nL3,7,, S) = (5,20,75,0.05)]. The specific viscosity of suspensions of U-

stat

shaped fibers first increases as p**** increases, and then approaches a constant. The

helical fiber suspensions show a more substantial change in specific viscosity as p5%*

increases. This may be attributed in part to an increase in the number of contacts.

stat — 5, the number of contacts per fiber at steady state for the

For a value of u
U-shaped fibers is (n.)ss = 0.08, while for the helical fibers (n.)ss = 2.3. The helical

fibers also flocculate for p5** > 5; flocculated suspensions show different rheological



144

- 4 09=01,¢M=0
| ® 6%=08¢Y=07
10 | o
I o
(__% o
- . 4
05 - i
:. 4
0.0 -A.‘. A A
0 15 30 45 60

ustat

Figure 5.6: The specific viscosity as a function of the static coefficient of fric-
tion for suspensions of fibers that are U-shaped (0°¢ = 0.1,¢° = 0) and helical
(0% = 0.8, 9% = 0.7) after shearing for v = 1500 with all other parameter constant
(Nyeg, nL3,1,, 8™/ ) = (5,20, 75,0.05).

behavior than homogenous suspensions as described in Section 5.3.4.

5.3.2 Effects of aspect ratio and stiffness

Suspensions of flexible, U-shaped fibers in simple shear flow were simulated at a
fixed volume fraction, ® = 0.003, with three different aspect ratios, r, = 75, 100,
and 150 (nL3? = 21.5, 38.2, and 85.9, respectively), and for various values of the
dimensionless stiffness S = EyI/n,7L*. All other parameter values were fixed at
(Nseg, 0°9, ¢°4, p#**) = (5,0.1,0,20). The steady-state specific viscosity is plotted as a
function of the dimensionless shear rate 7,7/FEy in Fig. 5.7(a) for the various values
of r,. All suspensions show shear thinning behavior over the range of dimensionless

shear rates investigated. As the aspect ratio increases, the shear thinning behavior
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becomes more pronounced. At large shear rates, the specific viscosities for all aspect
ratios appear to collapse onto a single curve, suggesting that for sufficiently flexible
fibers, the viscosity depends only on ®, regardless of the aspect ratio. This is in
contrast to results for suspensions of straight, rigid fibers where the viscosity scales
with nL?d oc ®/r,, regardless of the aspect ratio [84]. Figure 5.7(b) shows the
first normal stress difference normalized by the fiber Young’s modulus N;/Ey, as
a function of 7,7/Ey for the same fiber aspect ratios discussed above. The first
normal stress difference also increases with increasing aspect ratio, and the increase
is more noticeable at lower shear rates. The dependence of the rheological properties
on fiber aspect ratio and shear rate observed in the simulations is consistent with the
experimental results of Goto et al. [34] for nylon fibers in glycerin and Kitano and
Kataoka [50] for vinylon fibers in silicone oil.

The simulation results presented in Fig. 5.7(a) suggest that increasing the fiber
flexibility (decreasing Ey) will lead to smaller suspension viscosities. This apparently
contradicts the experimental results of Goto et al. [34] which demonstrate that nylon
fiber suspensions (Fy ~ 2 GPa) have larger viscosities than glass fiber suspensions
(Ey =~ 75 GPa) at the same aspect ratio (r, = 300) and concentration (¢ = 0.005).
This discrepancy may be explained by examining the equilibrium shapes of the nylon
and glass fibers depicted in Goto et al. The glass fibers appear to be nearly straight
at equilibrium, while the nylon fibers have permanent deformations at equilibrium.
As described in Section 5.3.1, the differences in the rheological properties of the glass
and nylon fibers observed by Goto et al. may be attributed to differences in fiber
shape as well as differences in fiber stiffness.

We also performed simulations for suspensions of fibers with aspect ratio

rp = 35 in order to compare with the experimental results of Chaouche and Koch
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Figure 5.7: (a) Specific viscosity and (b) normalized first normal stress difference
Ni/Ey as a function of the dimensionless shear rate 7,7/FEy for fibers of various
aspect ratios suspension and constant stiffness (Ey ) after shearing for v = 1500
(Nsegs Tp, @, 09, ¢4, p#2) = (5, 75, 0.003, 0.1, 0, 20).

[18] for nylon fibers in a silicone oil (r, = 36, 1, = 12.2 Pas). For this sys-
tem at a shear rate of ¥ = 9.8 s7!, the effective stiffness is S ~ 0.8. Under
these conditions, the suspensions appeared to be essentially Newtonian. Simula-
tion results for the steady-state specific viscosity as a function of concentration
for suspensions of fibers of various shapes are compared with the experimental re-
sults of Chaouche and Koch [18] in Fig. 5.8. Results for suspensions of rigid rods
[(Naeg, S, 0%, ¢°4, 15%%) = (1, 00, 0,0, 20)] agree reasonably well with the experimen-
tal measurements, with deviations becoming more apparent as the concentration in-

creases. As described in Section 5.3.1, friction does not significantly affect the re-

sults for straight fibers in the concentration range reported. If the fibers are made



147

2.0 T T T T T O
- ® Chaouche and Koch (2001)
—1 g% =
X NSeg =1, eeq =0
150 o N oo g-oa |
- w - L - .
& _ il
= 10 .
I o
05 .
°
I a " >4
00 PR S SR S I S S 1 PR B 1 1
0 10 20 30 40 50 60

Figure 5.8: Specific viscosity as a function of concentration for shorter fiber sus-
pensions (1, = 35), using rigid fibers (Ngeg, ST, 15%') = (1, 00, 20), straight flexible
fibers (Ngeg, S°, 0%, ¢4, stat) = (5,0.7,0,0,20), and slightly deformed flexible fibers
(Naeg, S, 0°0 ¢4, 15%%) = (5,0.7,0.1,0,20) compared with the experimental data of
Chaouche and Koch [18].

flexible and inherently straight with a dimensionless stiffness similar to that of the
experimental system [(Ngeg, ST, 6°9, ¢°4, p5*8t) = (5,0.7,0,0,20)], there is only a slight
improvement in predicting the specific viscosity at large concentrations. Simulations
with slightly U-shaped, flexible fibers [(Ngeg, S°T, 0%, ¢°4, %) = (5,0.7,0.1,0, 20)]
overpredict 7, by nearly an order of magnitude. These results suggest that the small
discrepancy between the experimental results and the predictions for suspensions of

straight fibers may be accounted for by a very small deviation of the shape (from

perfectly straight) of the fibers employed in the experiments.

5.3.3 Yield stress

Fibers in suspension can form networks if the concentration is sufficiently large that

each fiber experiences multiple contacts with other fibers. The networks exhibit
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mechanical strength and visco-elastic behavior [87, 91]. The network strength is con-
trolled by the cohesive nature of the contact points. Kerekes et al. [47] proposed that
the cohesive force that imparts strength to the network is caused by friction generated
by normal forces at points of contact between elastically bent fibers. Bennington et al.
[12] derived an expression for the yield stress of a suspension of elastically interlocked
fibers,

oy = ad?, (5.13)

where o is the yield stress and the coefficient « is a function of the fiber Young’s
modulus and aspect ratio. Bennington et al. measured the yield stress for a variety of
suspensions of wood and synthetic fibers, and found that the yield stress scaled with
the volume fraction as oy ~ ®% where 3 ranged from 2.5-3.5, in reasonable agreement
with their model.

We performed simulations in simple shear flow to determine the yield stress of
fiber suspensions at various volume fractions with (Ngeg, rp, 6°9, ¢°%, 15%*) = (5,75,0.1, 0, 20).
The effective stiffness was varied to obtain the dimensionless shear stress (o,.L*/EyI)
as a function of dimensionless shear rate (1/S°® o %), which is plotted for different
volume fractions in Fig 5.9(a). The data exhibit roughly Bingham-like behavior, with
the yield stress varying linearly with shear rate and a nonzero intercept. The appar-
ent dimensionless yield stress at each volume fraction was determined by fitting the
data to a straight line and equating the intercept at 1/5°T = 0 to the dimensionless
(dynamic) yield stress. The yield stresses obtained in this manner are plotted as a
function of volume fraction in Fig. 5.9(b). The simulated yield stresses scale with

volume fraction as oy ~ $>7°+08

, and thus the exponent is in the same range as the
values obtained experimentally by Bennington et al. [12].

The predicted value of a does not agree as well with that obtained experimen-
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tally. Using the parameter values for nylon fibers r, ~ 76, Fy- I ~ 3.5 x 107! N - m?,
and L ~ 3.45 mm [12], the simulations predict a value of o ~ 6 x 10% N /m?, whereas
Bennington et al. measured o &~ 10° N/ m”. The discrepancy between the simulated
and experimentally measured values of @ may be explained by a variety of effects.
The fiber shapes and values of the coefficients of friction employed in the simula-
tions certainly differ from those of the experimental systems, and as discussed in
Section 5.3.1, we expect the stresses to depend fairly sensitively on these parameter
values. Unfortunately, the fiber shapes and coefficients of friction for the systems
employed in the experiments were not reported.

The network model of Bennington et al. [12] suggests that the yield stress
should vary linearly with the fiber Young’s modulus. The same conclusion is ob-
tained for the simulations reported here, since the yield stress scaled by the Young’s
modulus is obtained by extrapolating the dimensionless shear stress to 1/5°T — 0.
The dimensionless yield stress is thus independent of the Young’s modulus, and the
dimensional yield stress varies linearly with the Young’s modulus. Bennington et al.,
however, did not observe this scaling in their experiments. This discrepancy may also
be related to the fiber properties. Bennington et al. obtained results for different fiber
Young’s moduli by employing different types of wood and synthetic fibers. Inspec-
tion of the fiber images presented in their paper reveals that the fiber shapes varied,
sometimes quite significantly, from one system to another. Thus the variation of the
yield stresses from one system to another may be due to differences in fiber shape
as well as differences in Young’s moduli, and thus the predicted scaling with stiffness

alone is not expected to hold.
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Figure 5.9: (a) Shear stress (0,.) as a function of shear rate for simulations of
fiber suspensions at different volume fractions, and (b) the extrapolated apparent
yield stress (og) from (a) as a function of volume fraction; (Ngeg, 7p, 0°9, ¢°9, p52) =
(5,75,0.1,0, 20).

5.3.4 Rheology in flocculated suspensions

Under the appropriate conditions, fiber networks subjected to shear flow develop into
a heterogeneous or flocculated state. Flocculation can occur when the fibers are
sufficiently stiff and interact with a sufficiently large coefficient of friction, even in
the absence of attractive interfiber forces (see Chapter 3 and [73, 74, 75]). Fibers
within flocs are caught in elastically strained configurations due to fiber bending

and friction forces at the contact points. A flocculated state in a simulated fiber
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Figure 5.10: Pair distribution function for the fiber centers-of-mass for a flocculated
suspension (%" = 20) and a homogeneous suspension (u*** = 1) after shearing for
v = 1500; (Ngeg, 7, nL3, S 6%, ¢°4) = (5, 75, 15, 0.05, 0.1, 0).
suspension can be characterized by the pair distribution function, g(r), where r is
the separation between between fiber centers-of-mass. Pair distribution functions
for two fiber suspensions after shearing to steady state (strain v = 1500) are plot-
ted in Fig. 5.10(a). The parameter values for the two simulations are the same
[(Nseg, T, nL3, S 0%, ¢°1) = (5,75,15,0.05,0.8,0.7)], except for the values of the
coefficient of friction (p**** = 1 and g5 = 20). For p**** = 1, fibers have an
equal probability of having their centers-of-mass at any separation. This resulting
suspension structure is homogeneous, as illustrated pictorially in Fig. 5.10(c). For
sufficiently large values of 15, the suspension flocculates [Fig. 5.10(b)] and there is
a high probability of finding the fiber centers-of-mass at small separations.
Flocculation changes the rheological properties of a suspension. Figure 5.11
shows the specific viscosity as a function of 1/S°" (o #) for fiber suspensions with
the same concentration and aspect ratio (nL® = 15 and r, = 75), but with different
shapes and coefficients of friction. Results labelled (A) are for simulations with helical
fibers [(6°9, 1) = (0.8,0.7)] with p5** = 20, results labelled (B) are for simulations

with the same helical fiber shape and p*** = 1, and results labelled (C) are for runs
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Figure 5.11: Specific viscosity versus the reciprocal of the effective stiffness for suspen-
sions of equivalent concentration (nL?® = 15) and aspect ratio (1, = 75) in which (A)
flocculates and (B) and (C) remain homogeneous: (A) (6%, ¢°4, %) = (0.8, 0.7, 20);
(B) (6°9, ¢°9, pi5*2*) = (0.8,0.7,1); (C) (6°9, ¢°9, pi5**) = (0.1, 0, 20).
with U-shaped fibers [(0°4, ¢°1) = (0.1,0)] and p**** = 20. Systems (B) and (C)
remain homogeneous for all values of Sf. The specific viscosity exhibits a low shear
rate plateau, with shear thinning behavior as 1/5°T increases. The value of 7, at
small values of 1/S°T is larger for system (B) than run for (C), because the fiber
equilibrium shapes in system (B) deviate more from perfectly straight. Thus, fiber
segments in system (B) are never all aligned with the flow direction, which leads to
a larger hydrodynamic contribution to the stress compared to the slightly deformed
fibers in system (C) which can approximately align with the direction of flow. The
helical fibers also experience more interfiber contacts, further increasing the stress.
System (A) remains homogeneous at large values of 1/S°T (high shear rates),
but for 1/5°% < 400 the suspension flocculates at steady state (following Schmid

et al. [75], we define a suspension as flocculated when g(r = 0.01L) > 3). Shear
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thinning behavior is observed over the entire range of 1/S°®. The specific viscosity is
also much larger in the flocculated state at small values of 1/S°T because there are
many frictional contacts that give the network mechanical strength. Chen et al. [19]
observed large jumps in the shear stress for wood and nylon fiber suspensions when
they flocculated at small shear rates. The simulation results depicted in Fig. 5.11 do
not exhibit large jumps in the shear stress over the range of dimensionless shear rates
investigated, but may do so at smaller shear rates.

At large values of 1/S°%, all of the systems described in Fig. 5.11 approach
the same value for 7,, where the suspension structures are homogeneous. This is
consistent with the results of Chen et al. [19] in which they observed that suspensions
dispersed from a flocculated state as the shear rate increased. Goto et al. [34] also re-
ported that fibers of various Young’s moduli and shape tended to approach the same
viscosity at high shear rates (for equivalent concentrations), where the suspensions
behaved essentially as a Newtonian fluids. This is consistent with the simulation re-
sults reported here, and corresponds to a limiting state where viscous forces dominate

over fiber elasticity and interfiber forces.

5.4 Conclusions

We have employed particle-level simulations to probe the effects of various features
of flexible fibers and their interactions on the rheology of fiber suspensions in simple
shear flow. The fibers are modeled as linked, rigid spherocylinders connected by ball
and socket joints. The fiber segments are acted upon by short-range repulsive forces
and interfiber static friction, but hydrodynamic interactions are ignored. Since we

are primarily interested in situations where there are significant numbers of inter-
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fiber contacts, hydrodynamic interactions are likely of secondary importance [35, 84].
Comparisons with previous simulations and experiments show reasonable agreement.

The viscosity of fiber suspensions is influenced strongly by the particle shape
and interfiber friction. Relatively small deviations in the particle shape from perfectly
straight can have O(1) effects on the specific viscosity. Interfiber friction impacts the
viscosity more for suspensions of nonstraight fibers than for suspensions of straight
fibers. These results suggest that these features should be quantified in experimental
studies.

Fiber flexibility results in shear thinning behavior. This is caused by a com-
petition between between hydrodynamic forces (which attempt to deform the fibers)
and fiber elasticity (which attempts to retain the equilibrium fiber shapes), char-
acterized by a dimensionless effective stiffness, S = EyI/n,7L* where Ey is the
Young’s modulus of the fiber material, I is the cross-sectional area moment, 7, is
the suspending fluid viscosity, 7 is the shear rate, and L is the fiber length; 1/5°t
can be interpreted as a dimensionless shear rate. Shear thinning proceeds from a low
shear rate plateau to a shape-independent high shear rate limit. The height of the
low shear rate plateau depends on the fiber shape and the coefficient of friction.

Suspensions that flocculate show shear thinning over wider ranges of shear
rates. However, the high shear rate behavior of these systems is the same as that
of suspensions that do not flocculate (at the same volume fraction). Results for
the concentration dependence of the apparent yield stress agree reasonably well with
experiments. Effects of fiber shape and friction make quantitative comparison with

existing experimental data difficult.
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Chapter 6

Handsheet formation and
mechanical testing via fiber-level

simulations

6.1 Introduction

Understanding the characteristics that give strength to a fiber network is important,
for example, in controlling wet web formation on a paper machine and making paper
with the desired physical properties. Fiber properties, such as the shape, length, and
flexibility, and suspension characteristics, such as fiber interactions and flow history,
influence the mechanical properties of the network. Understanding these relationships
can be useful for designing and optimizing suspension compositions and processes for
making paper and fiber-reinforced composites. In this chapter, we employ the fiber-
level simulation method discussed in Chapter 2 to probe the relationships between
fiber properties and interactions, and the mechanical properties of planar fiber net-

works subjected to elongational deformations.
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Fiber characteristics affect both the formation of a planar fiber network and
the resultant tensile strength. Mohlin et al. [60] examined the effect of shape on
the tensile strength of softwood fiber handsheets. They characterized fiber shape
in terms of curl, which is related to the ratio of the end-to-end distance and the
contour length, and the number of defects (i.e., kinks, twists, microcompressions,
etc.) per fiber. Mohlin et al. observed that the network tensile strength was larger
for handsheets composed of straighter fibers or fibers with fewer defects. Seth [77]
observed that as the fiber length increased and the coarseness (mass per unit length of
fiber) decreased, the tensile strength also increased in wet webs. This was attributed
to the fact that longer fibers experience more contacts per fiber, and it is the contacts
that give the network strength. Fibers that are less coarse have thinner walls that
allow them to collapse and bond over larger areas.

The fiber shape, length, and coarseness are all affected by refining which de-
creases the freeness, or drainability, of the fiber network. In general, refining leads
to fiber shortening, increased external fibrillation, equilibrium shape changes, and
fiber collapse [53]. Thus, networks formed from refined fibers have greater tensile
strengths than unrefined fibers [53, 62]. Forgacs et al. [33] also observed that the
tensile strength of wet webs increased with decreasing freeness, which they attributed
to the importance of friction forces between contacting fibers.

Theoretical efforts have also investigated how fiber network properties depend
on fiber characteristics. Meyer and Wahren [58] modelled concentrated suspensions
of fibers as elastically-interlocked networks, where each fiber is in contact with at
least three others. They determined that the strength of a network depends on the
fiber aspect ratio r, = L/d (L is the fiber length and d is the diameter), volume

fraction ®, and fiber Young’s modulus Fy. Networks can be formed from flowing
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fiber suspensions, in which fibers come to rest in elastically strained configurations.
Soszynski and Kerekes [81, 82] reasoned that elastic fiber interlocking results from
friction forces acting at the contacts between elastically deformed fibers, that maintain
the mechanical integrity of the network. They demonstrated the importance of fiber
elasticity in the strength of nylon flocs, by showing that flocs in which the elastic
stresses were reduced by heating could be dispersed more easily than never-heated
flocs.

Experimental investigation of fiber networks can be supplemented with particle-
level simulations of idealized suspensions, in which the effects of individual fiber
properties and interactions (i.e., shape, flexibility, size, and friction) can be system-
atically investigated, which is challenging to accomplish in laboratory experiments.
The equations of motion for each particle are solved numerically, subject to the forces
and torques identified, in order to evolve the particle positions and orientations in
time, and thus produce a prediction of the network microstructure and mechanical
properties. Numerous simulation studies have focused on predicting the rheology of
rigid fiber suspensions [35, 84, 98|. Flexible fibers were simulated by Yamamoto and
Matsuoka [93, 94] who modelled fibers as chains of rigid spheres connected through
springs, with potentials to mimic resistance to bending and twisting. Ross and Klin-
genberg [71] modelled flexible fibers as inextensible chains of rigid prolate spheroids
connected through ball and socket joints. This model can represent large aspect
ratio fibers with relatively few bodies, thus reducing computational cost and fa-
cilitating simulation of concentrated suspensions. Schmid et al. [75] extended this
method, modelling flexible fibers as chains of spherocylinders connected by ball and
socket joints, that interact via short-range repulsive forces as well as interfiber fric-

tion. These simulation studies illustrated the importance of fiber equilibrium shape,
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flexibility, and frictional interactions in determining flocculation behavior.

In this chapter, we modify the method utilized by Schmid et al. [75] (see Chap-
ter 2) to investigate the relationships between fiber properties and interactions and
the mechanical properties of planar networks of idealized fibers. The fiber model
and simulation method are briefly described in Section 6.2. Fibers are modelled as
flexible chains of rigid spherocylinders that interact through a variety of forces. Fiber
networks are formed by simulating the compression of a fiber suspension over a screen
permeable only to the suspending fluid. The fiber networks thus formed are subjected
to a constant straining in the plane of the network, and the tensile force required is cal-
culated. A device and experimental method for measuring the mechanical response of
fiber networks (e.g., handsheet samples) for deformations similar to that employed in
the simulations are also briefly described. In Section 6.3, we present an example of the
mechanical response to the elongation of a handsheet sample. Simulations of planar
network elongation exhibit features similar to that observed experimentally. We then
employ the simulations to illustrate the relationships between the mechanical proper-
ties of planar fiber networks and such fiber characteristics as shape, length, flexibility,
as well as the frictional interactions between fibers. Although trends produced by the
simulations agree qualitatively with those observed experimentally, quantitative dif-
ferences are significant. The differences, as well as possible explanations and methods
for resolving discrepancies, are discussed in Section 6.4. The main conclusions from

this chapter are summarized in Section 6.5.
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6.2 Methods

6.2.1 Fiber model and simulations

Flexible fibers are modelled as neutrally-buoyant chains of linked rigid bodies im-
mersed in a Newtonian liquid. The model includes realistic features such as fiber
flexibility, irregular equilibrium shapes, and mechanical contact forces between fibers.
The model and simulation method are similar to that employed by Schmid et al. [75]
and are described in more detail in Chapter 2.

Each fiber in the suspension is represented by N, rigid cylinders (length 2/,
radius b) with hemi-spherical end caps, connected end-to-end by ball and socket
joints (Fig. 6.1). The motion of the fiber segments is described by Newton’s laws
of motion in which we neglect fiber inertia. The force balance on a fiber segment
¢ includes contributions from hydrodynamic drag (Fi1y d), mechanical contact forces
(F5e™), externally applied forces (FY), and forces at each joint that maintain the

segment connectivity (X;),
Ne,
F?yd +F+ X0 - X+ ZFZ?H =0, (6.1)
k
where N¢, is the number of contacts on fiber segment i. The torque balance on fiber

segment ¢ includes similar contributions with the addition of a restoring torque at

each joint (Y;),
T?yd +Yi — Y +vip X FY +0p; X [Xip + Xi] + Z i X Fy'] =0, (62)

where T?yd is the hydrodynamic torque, p; is the orientation vector of the segment,
v; is the distance from the segment center to the location of the externally applied

force, and G, is a vector from the center of segment ¢ to the point of contact with

body k.
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contact ik

Figure 6.1: Schematic diagram of a model fiber composed of rigid spherocylinders
linked by ball and socket joints. Here, segment ¢ is in contact with segment & from
another fiber.

In this model, hydrodynamic interactions are neglected, and the hydrodynamic
force and torque are approximated as that on an isolated body, F?yd =A,; - [U¥ -1
and T?yd =C; [° —w;]|+ H, : E*°, where the resistance tensors A;, C;, and H, for
the spherocylinder segments are approximated by the resistance tensors of a prolate
spheroid with an equivalent aspect ratio r. = 0.7r, /Ny (see Chapter 2). The ambient
velocity U°, angular velocity €277, and rate of strain tensor E> are evaluated at the
center-of-mass of each segment. The segment translational and angular velocities are
r; and w;, respectively.

In this study, we examine the limiting situation in which fiber motion is dom-
inated by interactions with other fibers and externally applied forces, and not influ-
enced by an ambient flow (e.g., for very slow ambient flows within networks). Thus
fiber segments will still experience hydrodynamic drag, although U$°, € and E*
are set to zero.

The restoring torque Y; describes the resistance of the elastic fibers to bending

and twisting. The bending and twisting components of this torque are assumed
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to be linear in the difference between the bending and twisting angles (#; and ¢;

respectively) and their equilibrium values (6 and ¢:?),
|Yl| = Iib<9i - 0§Q) + Kt(qbi - ¢§Q)7 (63)

where K, and k; are the bending and twisting constants of the fiber. The bending
constant is related to the stiffness of the fiber material by k, = EyI/2¢, where Ey is
the Young’s modulus, and I = 7b?/4 is the area moment. The twisting constant is set
to k = 0.67ky in this study, equal to that of a linearly elastic circular cylinder with
a Poisson’s ratio of 0.5. The fiber flexibility is characterized by a single parameter
which we call the effective stiffness S°T = EyI/n,yL*, where 1, is the suspending
fluid viscosity, 4 is the characteristic deformation rate (described further below), and
L is the total fiber length.

The fiber segments remain connected by applying a constraint for each joint,
r; +{p; = riy1 — {piy1, (6.4)

where r; is the position of the center of segment . These constraint equations allow
for the solution of the constraint forces at each joint X;. Since the segments are rigid
and remain connected, the fibers are inextensible (but still flexible).

Fibers experience mechanical contacts with other fibers in the suspension. Two
fiber segments i and k are considered to be in contact if the separation between their
surfaces, h;g, is less than 0.33b. The force that results from each contact is decomposed
into two components—a force in the normal direction of the contact (F},) and a
frictional force (F&) in the plane of the contact. The purely repulsive, short-range
normal force exerted on body i by body k is modelled FY = —F exp|[—ah;;]n,;,, where
n;; is the unit normal vector directed from body ¢ to body k, F' = 9007n,¢bY is the

magnitude of the repulsive force, and a = 20/b. The friction force is determined by
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the constraint of no relative motion in the plane of contact,

Auyy, - ellOC
Auy, - el | =0, (6.5)
Fi - ny,

where Au; is the relative velocity between bodies ¢ and k at the point of contact,

and the plane of contact is defined by the vectors el°® and ef®. The calculated friction

force is then subjected to a Coulombic friction law of the form

|Flc| < S FY| = contact remains intact

. . Ay,
> P EL] = B = g FY (6.6)
|Auzk|
where ;5% and p¥® are the static and kinetic coefficients of friction.

Network formation is modelled using a piston of mass M which falls in the —z
direction under the force of gravity, pushing the fibers it contacts downward toward
a smooth, planar screen permeable only to the suspending liquid. The motion of the

piston in the z direction is governed by Newton’s equation of motion,

Nc,pl

d2 Z pl con
M =—Mg+)Y F (6.7)
i=1

dt? wh

where z, is the position of the piston, g is the acceleration of gravity, F79" is the
(frictionless) contact force in the z direction caused by the interaction with segment
i, and N, is the number of contacts with the piston. We acknowledge that this
physical model of network formation does not accurately represent the formation
of real handsheets; it is used here simply as a method for obtaining planar fiber
networks. For the network formation process, the characteristic deformation rate is
defined 4 = /g/b.

Elongation of the planar networks is modelled by specifying constant velocities

for fiber segments that intersect planes at opposite faces of the simulation box, as
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plane of plane of
intersection intersection

x=-CL/2 x=CL2

Figure 6.2: Schematic diagram illustrating the simulation cell after the formation of
the planar network, and the location of the planes containing the fibers that experience
external forces to simulate elongation.

depicted schematically in Fig. 6.2. Referring to this figure for elongation in the =z
direction, the constraint for a fiber segment 7 intersecting one of the x faces of the

box is

where u, is the speed at which the sample faces are displaced, and the positive or
negative sign is chosen for fibers intersecting the face at * = (L/2 or —(CL/2, re-
spectively. These constraints permit the evaluation of the corresponding externally
applied forces (F?) introduced in Eq. (6.1). For elongation, the characteristic defor-
mation rate employed in the definition of S°% is 4 = u,,/b. The tensile force required

to maintain this motion is

T —

N =

( >R - ) Ff) e, (6.9)

right face left face
The equations of motion and the constraint equations for all of the fiber seg-

ments in the suspension can be expressed as a system of differential algebraic equa-
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tions (DAEs) for the unknown coordinates and constraint forces,

Pl@ =0 (6.10)
E(q,q,A) = 0,
©(q,q) = 0,

where q is a vector containing the generalized coordinates of each fiber segment (po-
sitions and orientations), and A is a vector containing all the constraint forces (X and
F¢) in the suspension. If the segment orientations are represented by Euler param-
eters [92], there are 7Ngp Ny equations of motion to be solved. The inextensibility
constraint [Eq. (6.4)], represented by the vector W, is composed of 3Ngp(Ngeg — 1)
constraint equations that depend on only the positions and orientations. The 3N¢
friction constraint equations [Eq. (6.5)] are contained in E, where N¢ is the total num-
ber of contacts in the system. The tensile force constraints [Eq. (6.8)] are represented
by the vector ©.

Simulations of planar network formation are performed by randomly placing
fibers in a simulation cell with dimensions (L x (L at the base (i.e., xy planar di-
mensions of the desired network; ¢ = 2 for all results reported here), and a height
of 2L in the z-direction. The solid piston is initially located at the top (z = 2(L),
the semipermeable screen is located at the bottom (z = 0), and periodic boundary
conditions are applied in the z and y directions. The system of DAEs [Eq. (6.10)] is
solved numerically for the motion of the fibers and the piston (in the absence of the
tensile force constraint, ®). The suspending fluid is effectively “squeezed” out, and
a network is formed of the desired thickness. The piston mass M is chosen such the
final volume fraction of the network is ® = 0.05£0.005. This produces a planar fiber
network. For the results presented, the “sheets” formed were approximately 10-15

fiber diameters in thickness. Once the network is formed, it is relaxed with the piston
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fixed before beginning elongation.

Simulation of the the network elongation is then performed by first identifying
the fiber segments that intersect the planes = +(L/2, for which the tensile force
constraints are applied [Eq. (6.8)]. The system of DAEs [Eq. (6.10)] is the solved
numerically for the motion of the fibers as the network is elongated (with the piston
position fixed). The tensile force T is evaluated via Eq. (6.9) to determine the force as
a function of deformation. An approximate solution method was developed to solve

the system equations, the details of which are described in Chapter 2.

6.2.2 Experiments

A miniature tensile testing device was constructed, as shown in Fig. 6.3, to measure
the tensile force exerted on a fiber sheet sample, and to visualize deformation of the
network structure as the sheet is elongated. The device and experimental method are
summarized briefly here, and will be described in more detail in a future publication
[76]. The sample was held in place horizontally by two clamps. One clamp was
attached to a 50 gram load cell, and the other was attached to a lead screw driven at
a constant speed of 2u, ~ 3 mm/min. The pulp employed was unrefined and bleached
softwood market pulp screened in a Bauer-McNett classifier. The fractions from the
25 mesh screens were collected for experiments. Handsheets of dimensions 5 cm x 5
cm were formed in a sheet mold, in which a dilute fiber suspension was drained over
a 400 mesh nylon screen screen. The resulting network was air dried. The formed
sheets tested had a basis weight of approximately 10 g/ m®. The sheets were cut into
strips with a width w = 3.2 mm, and the exposed length between the clamps was
r, = 8 mm. A microscope with a CCD camera was mounted above the sample to

capture images as the sample elongated (using the program UTHSCSA ImageTool



166

camera

computer

load cell

Figure 6.3: Schematic diagram of the tensile apparatus developed to test small planar
fiber networks.

available free via anonymous FTP from ftp://maxrad6.uthscsa.edu).

6.3 Results and discussion

6.3.1 Experiments on small fiber sheets

The tensile force 7" is plotted as a function of elongational deformation Ax/L [where
Az is the change in length between clamps and L is the average fiber length (L ~
2.5 mm)] for a typical handsheet sample in Fig. 6.4. The tensile force initially increases
linearly with deformation, indicative of a linear elastic response. The tensile force then
begins to vary nonlinearly with deformation, before passing through a maximum. For
deformations beyond the linear region, the tensile force fluctuates significantly. The
decrease in tensile force with deformation after the maximum proceeds more slowly
than the initial linear increase.

The images of the deformation process reveal several distinct processes associ-
ated with the features in Fig. 6.4. When the deformation commences, fibers start to

align in the direction of the extension, and some of the fibers bend. Within the lin-
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Figure 6.4: Tensile force as a function of deformation for a typical handsheet as
described in the text.

ear portion of the tension—deformation curve, fiber contacts appear to remain intact.
Further deformation causes contacts to break, after which fibers often rapidly spring
back to form new contacts with other fibers. These contact breaking and reforming
processes likely give rise to the tensile force fluctuations (contacts formed initially
may be bonds, and may differ substantially from contacts reformed at larger defor-
mations). The maximum tensile force is associated with a relatively sudden release
of numerous contact points, and fibers are not observed to rupture. At deformations
beyond that corresponding to the maximum tensile force, we observed small clusters
of fibers that break contacts, and the fibers are simply pulled from the sample. Some
fibers that are bent during the elongation are observed to spring back to their equi-
librium shape upon breaking contacts. As the tension approaches zero, most fibers
have pulled out from either side of the network, leaving a clear fracture zone in the

network.
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Ax/L =0 Ax/L=0.5 Ax/L =1

Figure 6.5: Snapshots of the structure of a typical fiber network subjected to elonga-
tion at various deformations.

6.3.2 Simulations: effect of fiber equilibrium shape, length,

flexibility, and friction

Fiber network strength is influenced by a number parameters including fiber equi-
librium shape, length, flexibility, and coefficient of static friction. In this work, we
investigated the effects of these parameters on the mechanical response fiber net-
works subjected to elongational deformation as described in Section 6.2. In all of
the simulation results presented here, the fibers are made up of Ngz = 5 segments,
are monodisperse with respect to length and stiffness, interact only with short-range
repulsive forces and static friction (u*" = 0), and are formed to a volume fraction
® = 0.05 £ 0.005. The extension rate u, is inversely proportional to the effective
stiffness, u, oc 1/S°f.

Fig. 6.5 illustrates snapshots of structures from a typical simulation run at
three different deformations Az /L, where Az is the distance the sample is stretched
and L is the length of a fiber, for a suspension of straight, flexible fibers (S°f, r,, 6°4,
o°, ) = (0.05, 75, 0, 0, 20).

The mechanical response of the simulation depicted in Fig. 6.5 is illustrated
in Fig. 6.6, where the dimensionless tensile force T'/n,u,L is plotted as a function of

deformation Az/L. Features of the response are similar to that observed experimen-
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tally. The tensile force initially varies linearly with deformation corresponding to a
linearly elastic region. The tensile force then varies nonlinearly and passes through
a maximum, accompanied with large fluctuations. The (average) rate of decrease of
the tensile force with deformation after the maximum is slower than the initial rate
of increase in the linear region. The only feature that differs qualitatively from the
experimental response is that the tensile force at large deformations does not decay
to zero. This arises because the fibers experience hydrodynamic drag as they are
deformed, and the viscosity employed in the simulations is significantly larger than
that employed in the experiments (i.e., the simulations correspond more closely to
a wet network). A larger viscosity is employed in the simulations for computational
reasons, which are discussed in more detail below.

The fluctuations in tensile force correspond to fiber contacts breaking and
reforming, analogous to that observed experimentally. The larger rapid decreases in
the tensile force correspond to multiple contacts breaking virtually simultaneously.
The fact that the fluctuations are rapid implies that the fibers are relatively stiff;
when a contact breaks, fibers are able to spring back and reform new contacts very

quickly relative to the rate of deformation.

Equilibrium shape

Natural and artificial fibers are not perfectly straight at equilibrium. Wood fibers,
for example, display a variety of configurations like those seen in Fig. 6.7(a). The
equilibrium fiber shapes utilized in the simulations were either inherently straight
(0°0 =0, ¢*4 = 0) or U-shaped (0°¢ > 0, ¢* = 0). Examples of the fiber equilibrium
shapes used in the simulations are displayed in Fig. 6.7(b).

Fiber networks were formed using straight and U-shaped fibers (0°? = 0.1 and
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Figure 6.6: Dimensionless tensile force T'/n,u,L versus deformation Axz/L for the
simulation run shown in Fig. 6.5 .

6% = 0.5), in which the remaining parameters were held constant (S°F, r,, pstat) =

(0.05,75,20). The dimensionless tensile force (1'/n,u,L) is plotted as a function
deformation (Axz/L) for elongation of these systems in Fig. 6.8. Tensile force data
were averaged over deformation intervals of A(Axz/L) ~ 0.02. Each set of symbols
Fig. 6.8 represent an average of two simulation runs. The straight fiber network
exhibits a rapid increase in tensile force as the sample is strained, to a maximum value
T, defined as the tensile strength of the network. If the fibers are slightly deformed
at equilibrium (61 = 0.1), the network exhibits similar behavior, but with a smaller
tensile strength. The tensile force for fiber networks with substantially deformed
fibers (0° = 0.5) increases more slowly with increasing deformation, implying that
the network is more flexible (smaller elastic modulus) than that for the straighter
fibers. The tensile force for the networks with highly deformed fibers also does not

pass through a maximum over the deformation range simulated.



171

0% (rad.) shape
0.0
0.1 - =

os /7 N\
(b)

Figure 6.7: (a) Softwood fibers in water, and (b) examples of U-shaped fibers (¢** = 0)
for various values of 6°.

The different responses for networks composed of straight and highly deformed
fibers correspond to different structure evolutions, as illustrated by the snapshots at
Az/L = 1.0 in Fig. 6.8. At this deformation, the network of straight fibers has
developed a clear fracture zone extending vertically across the entire picture, with
most fibers either pulled out from the opposite side of the fracture zone, or in contact
with only one other fiber. In contrast, the network composed of highly curved fibers
exhibits an incomplete fracture, with the network intact across the bottom of the
picture. The network of highly curved fibers is thus capable of transmitting a larger
force horizontally across the system at large deformations (although the magnitude
of the force transmitted at small deformations is smaller than that transmitted by
the networks of straighter fibers).

The effect of shape on the tensile strength of fiber networks can be further
understood by examining fiber dynamics during the extension process. For a network
that contains nearly straight fibers, the fibers start to align in the = direction as the
sample is deformed. The extension continues until the groups of fibers are aligned
or the network is locked in a nearly rigid configuration. At this point, the network

fails at the the weakest frictional contact points, resulting in a global disruption of
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the system. Fibers that are deformed at equilibrium also attempt to align in the
x direction as the deformation increases. However, they can accommodate some of
the applied stress by bending into straighter configurations. The simulations show
that deformed fibers first start to align, become locked in position due to contacts,
and then start to straighten before contacts break. This results in a lower overall
tensile strength and a more elastic network (longer breaking lengths and lower elastic
modulus) for networks of deformed fibers relative to that for straight fibers.

These simulation results are consistent with tensile force experiments per-
formed on dry pulp handsheets. Mohlin et al. [60] observed that the tensile strength
of handsheets increased as the shape factor increased (decreasing shape factor corre-
sponds to more highly deformed fibers). They also noticed that the stretch-to-break

value increased with decreasing shape factor.

Fiber length

Fiber length also effects the strength of planar fiber networks. We performed simu-
lations using fibers of various lengths by changing the fiber aspect ratio (r, = 50, 75,
and 100), while holding all other parameters constant. The fibers were U-shaped and
all had the same radius of curvature Ry = 60b. The radius of curvature is defined
here as the average of the radii of circles tangent to the joints and segment centers,
Ry = €/2-[1/sin(0°9/2) + 1/ tan(6°4/2)]. The effective stiffness St = Ey-I/n,yL*
was chosen to make the fiber stiffness (Fy[I) constant [r, = 50 = ST = 0.25,
r, =75 = S = 0.05, r, = 100 = S°T = 0.016]. All fibers interact with the same
coefficient of static friction, ps** = 20.

The results for the network tensile force T//Eyb* as a function of deformation

are illustrated in Fig. 6.9(a). The network strength increases and the maximum tensile
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Figure 6.8: Dimensionless tensile force 7'/n,u,L as a function of the deformation
Ax/ L for fiber networks of different shapes, and configuration snapshots at Az/L = 1.
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strength is shifted to larger deformations, as the fiber aspect ratio is increased. The
maximum value of the tensile strength T,/ Eyb? and the network elastic modulus
E.., normalized with respect to the fiber Young’s modulus FEy, are plotted as a
function of fiber aspect ratio in Fig. 6.9(b). The maximum tensile strength and the
elastic modulus increase linearly with fiber aspect ratio. The results indicate that the
network strength increases and the network becomes stiffer with fiber length. This
can be explained by the average number of contacts per fiber, which increases with
with fiber aspect ratio (2.5, 2.7 and 3.2 for aspect ratios 50, 75 and 100, respectively).

The fact that the network strength increases approximately linearly with aspect
ratio is consistent with the experimental results of Seth [77]. Seth measured the wet-
web tensile strength of softwood pulp and found a linear dependence with respect
to the average fiber length. This was attributed to longer fibers having an increased
number of frictional contacts with other fibers. As described above, the simulations

indeed show that longer fibers experience more contacts.

Flexibility and friction

Fiber networks with various values of the effective stiffness S° were simulated with
(rp, 0°9, ¢%9, pi2) = (75,0.1,0,20). Figure 6.10 illustrates the results for the dimen-
sionless tensile force T'/n,u,L as a function of deformation Az/L for ST = 0.005,
0.025, 0.05 and 0.5. As S°% increases, the maximum value of the tensile strength
and the elastic modulus of the network increase. This is not unexpected, as the force
required to deform individual fibers increases with increasing fiber stiffness. The
network strength increases more slowly as S is increased beyond 0.05.

stat

By increasing the coefficient of static friction p***', a greater force is necessary

to break fiber-fiber contacts. Thus, the tensile strength of a fiber network is expected
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Figure 6.9: (a) Dimensionless tensile force T/Eyb? as a function of deformation
Ax /L for fibers of different aspect ratios, and (b) the dimensionless maximum tensile
strength T, /Eyb? and elastic modulus of the fiber networks E,,/FEy as a function of
fiber aspect ratio
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Figure 6.10: Dimensionless tensile force T'/n,u,L as a function of deformation Az/L
for planar fiber networks at various effective stiffness values.

stat

to increase as p** increases. Elongation of fiber networks with (r,, Seff gea ped) =

stat - and the results for the

(75,0.05,0.1,0) were simulated using various values of p
dimensionless tensile force as a function of deformation are presented in Fig. 6.11.
As expected, the network is strengthened with increasing values of p***. The elastic

stat indicating that the network is

modulus of the fiber network also increases with pu
becoming stiffer as the contacts between fibers become stronger.

Soszynski and Kerekes [82] proposed that the cohesive forces that hold fibers
within networks are caused by interfiber friction. The strength of the friction force
is proportional to the normal force between contacting fibers, and this normal force
is a function of the fiber stiffness. Soszynski and Kerekes [82] demonstrated this
mechanism experimentally; nylon fiber flocs readily dispersed when the fiber stiffness

was reduced by heating the flocs above the glass transition temperature of nylon.

Fibers caught in elastically strained configurations strengthen the network as the
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Figure 6.11: Dimensionless tensile force T'/n,u,L as a function of deformation Az/L
for planar fiber networks in which the coefficient of friction is varied.

fiber stiffness increases, by increasing the friction force at contacts. The simulation
results are thus consistent with the notion that fiber flexibility and friction contribute

to the overall strength of a fiber network.

6.4 Discussion

The simulations qualitatively reproduce numerous experimentally observed features
of the mechanical response of planar fiber networks. However, as described below,
quantitative agreement is lacking. This discrepancy is due at least in part to com-
putational limitations that prevent us from performing the simulations for the actual
experimental conditions, in addition to possible shortcomings of the model.

stat

The values of p**** employed in the simulations are much larger than those

measured experimentally, which for contacting cellulose surfaces and cellulose fibers



178
is po = 0.5 [79, 99]. For values of p** < 1, the simulated networks exhibit no
significant tensile strength beyond that provided by the hydrodynamic drag. Possible

stat are needed to produce mechanical responses

reasons that such large values of
similar to those observed experimentally are related to the nature of contacts formed
and the values of the effective stiffness employed.

Real fibers can bond at contact points, and large coefficients of friction may
serve to approximately model fiber bonding. Explicitly adding fiber bonding to the
present model should produce similar mechanical responses at lower values of %
(i.e., interfiber bonds would increase the load at contact points, thus increasing the

stat). Wood fibers are also significantly more complex than

friction force at fixed p
the simple fiber model employed here. Fibrillation and other surface features may
impede fibers from sliding over one another and cause surface entanglements, yielding
larger apparent coefficients of friction. Seth [77] observed that the tensile strength
of wet softwood fiber webs decreased with fiber coarseness (linear density). Fiber
coarseness is approximately proportional to wall thickness. Fibers that are less coarse
can collapse to ribbon-like structures, producing contact areas greater than those for
thick-walled fibers that do not show the same extent of collapse. Such features are
not included in the present model.

The values of the effective stiffness S°f = EyI/n,7L* used in the simulations
are also significantly smaller than those encountered experimentally. Choosing pa-
rameter values representative of the experimental system described in Section 6.3.1
(E,I =107'* Nm? [86], o = 2 x 107° Pa-s for air [13], u, = 3 mm/min, b = 16 pm,
4 = u,/b=31s"" and L = 2.5 mm), the experimental value of the dimensionless
stiffness is (Seft)exp = 410, which is much larger than that employed in the simulations

(S < 1). Computational limitations prevent us from performing simulations with
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such large stiffnesses. As the stiffness increases, the maximum allowable time step for
stable integration of the equations of motion decreases rapidly. Thus simulations for
Seff > 1 cannot be performed in a reasonable time.

In Chapter 3, we performed simulations to study the flocculation behavior of
flexible fiber suspensions, similar to the method employed here. Flocculation was ob-
served for various combinations of S°f and p5'%*. As S°f was increased, the mechanical

integrity of model fiber flocs was maintained for smaller values 5%t

. This suggests
that qualitative agreement between experimental measurements and simulations of
the mechanical response of planar fiber networks may be achieved for reasonable val-
ues of the coefficient of friction if simulations could be performed for larger values of
Seft,

Alternatively, experiments may be modified to be performed at conditions
more amenable to the simulations. For example, the viscosity of the suspending fluid
can be increased to produce smaller values of S°. In order to obtain S = 0.05
as commonly employed in the simulations, a viscosity of ny = 0.16 Pa-s is required
(using the values for Ey I, 4 and L defined above). This is roughly four orders of
magnitude larger than that of air.

Finally, we consider the magnitudes of the tensile forces. The experiments
produced tensile forces on the order T' =~ 5 x 1072 N (see Fig. 6.4). The dimensionless
tensile forces produced by the simulations are on the order T'/nou,L ~ 5 x 103.
Choosing the parameter values 79 = 0.16 Pa-s (to match experimental and simulated
values of S°f = 0.05), u, = 3 mm/min, and L = 2.5 mm, the dimensional simulated
tensile force magnitudes are on the order 7'~ 1 x 10~* N, significantly smaller than
the experimentally measured values.

The difference between the measured and simulated tensile forces may be due
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to shortcomings in the model, or from the computational limitations that prevent us
from simulating the precise experimental conditions. Resolving this discrepancy will
require either overcoming the computational limitations, or conducting experiments

under conditions that can be simulated efficiently.

6.5 Conclusions

We have presented a model and simulation method to investigate the mechanical
response of planar networks subjected to elongational deformation. The simulated
responses agree qualitatively with numerous experimental observations. Simulations
exhibit shapes and features of plots of tensile force as a function of deformation
similar to that measured experimentally. The trends observed as the fiber shape and
length are varied agree with experimentally observed trends. The dependence of the
mechanical response on the coefficient of friction and fiber stiffness are consistent with
the elastic interlocking mechanism of network strength proposed previously. Thus it
appears that such simulation methods may be useful for probing the effects of fiber
features and interactions on the mechanical properties of fiber networks.
Quantitative agreement with experiments, however, is lacking. The discrep-
ancies may be attributed to shortcomings of the model, as well as computational
limitations that prevent us from performing the simulations at precisely the same
conditions employed in typical experiments. Resolving this discrepancy requires over-
coming the computational limitations, or conducting experiments under conditions

more amenable to the simulations.
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Chapter 7

Conclusions and recommendations

7.1 Summary

In this thesis, we have described a model for flexible fibers and a simulation technique
to determine their motion in suspensions and networks. The model incorporates such
fiber features as flexibility, deformed equilibrium shapes, and interfiber friction. The
model fibers consist of linked rigid spherocylinders connected by ball and socket joints
(for isotropically bending fibers). Simulations were performed to study flocculation,
floc dispersion, the rheology of fiber suspensions subjected to simple shear flow, and
the formation and strength of planar fiber networks.

Simulations demonstrated that suspensions of flexible fibers that experience
interfiber friction can flocculate in the absence of attractive forces in simple shear
flow. The observations are consistent with the elastic fiber interlocking mechanism
proposed by Soszynski and Kerekes [81, 82]. If fibers are too flexible, or the coefficient
of friction is too small, fibers will not flocculate. As the fiber stiffness is increased,
the coefficient of friction necessary to hold flocs together decreases. Fiber equilibrium
shape also impacts flocculation behavior. As the inherent curvature of fibers increases,

the tendency to form flocs shifts to lower concentrations. Model features such as
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kinetic friction and weak attractive forces have little impact on fiber flocculation.
Fibers that bend anisotropically shift flocculation conditions to larger coefficients of
friction compared to those required for the flocs of isotropically bending fibers.

Flocs that were formed in simple shear flow simulations were extracted and
placed in unbounded linear flow fields (i.e., simple shear, uniaxial extension, and pla-
nar extension) to investigate floc dispersion. Flocs place in unbounded simple shear
flow slowly dispersed by losing small clumps of fibers from the main floc. Exten-
sional flows initially dispersed flocs much more quickly, but coherent secondary flocs
remained. The rate of floc dispersion increased in all of the flow fields by making the
fibers more flexible or by decreasing the coefficient of friction. This is again consistent
with the elastic fiber interlocking mechanism of floc coherency.

Simulations of fiber suspensions demonstrate the importance of fiber charac-
teristics on rheological properties. Small permanent deformations to the fiber shape
from perfectly straight lead to O(1) effects on the specific suspension viscosity. In-
terfiber fiber friction has less of an impact on the specific viscosity as the fiber shape
becomes straighter. Fiber suspensions exhibit shear thinning behavior, which depends
on fiber shape and aspect ratio at lower shear rates, while the viscosity appears to be
independent of shape and fiber length at high shear rates. When flocs form in sus-
pensions, the shear thinning behavior persists to lower shear rates than that observed
for homogenous suspensions.

The model and simulation method were modified to simulate the formation
of planar fiber networks, and subsequently, to test their mechanical strength. The
mechanical response to elongation measured in simulations contains features similar
to those observed experimentally. The tensile strength increases as the fiber length

is increased, and as the fibers become straighter, consistent with experimental ob-
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servations. The network strength also increases with increasing the fiber stiffness
or coefficient of friction, consistent with the elastic fiber interlocking mechanism for

network strength.

7.2 Recommendations for future Research

7.2.1 Experimental research

Numerous experimental research themes may be investigated to gain a better under-
standing of fiber suspensions and networks. We list here three areas of research for
experimental work, including flow visualization, determining individual fiber proper-
ties, and measuring planar network strength.

As discussed previously, flocculation in fiber suspensions is a process that is
not completely understood. The simulation method has allowed us to probe the
flocculation process at the fiber level. An experimental technique to visualize floc
formation in flowing systems, in order to observe the floc formation process and
track particle dynamics similar to that achieved by the simulations, would be very
useful. It would also be useful to develop measures of the suspension structure, and
particularly the heterogeneity associated with flocculation, that are amenable to both
experimental measurements and simulations. In the past, light scattering methods
have been used to quantify heterogeneities in fiber suspensions [55, 85|, and new
methods are being developed, such as NMR imaging [5], to understand the structure
of flowing fiber systems.

The simulations suggested that fiber shape, flexibility, and interactions have
important effects on the suspension microstructure. We would like to gain a bet-

ter understanding of individual fiber characteristics and their impact on suspension
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stucture through experiments.

The shape of fibers is difficult to characterize, and is usually described in terms
of the curl and kink. The curl is related to the ratio of the end-to-end distance of a
fiber to the contour length, while the kink is a measure of the number of abrupt direc-
tion changes along a fiber contour [63]. A fiber may also contain microcompressions
and angular twists, which have been characterized generically as “defects” [60, 63].
Devising more detailed methods for quantifying fiber shapes would be very useful for
directly comparing experiments and simulations.

Fiber flexibility is another quantity that is very dependent on the individual
fiber structure, such as the fiber cross sectional structure (i.e., hollow tube, solid
tube, etc.) and the presence of weak points. Past attempts to measure pulp fiber
flexibility have used ideal fibers [86]. Experimental methods for measuring flexibility
that take into account fiber properties such as shape, coarseness, and non-uniformities
are desirable.

Simulations have shown that fiber interactions are important in determining
fiber dynamics. We would like to gain a better understanding of individual fiber-
fiber interactions. This may include a visual investigation of two fibers in contact in
order to determine the effect of surface structure and interactions on relative fiber
motion. Experimental techniques for measuring friction forces and bond strengths
for individual fiber contacts are also needed to improve our model and simulation
method.

We demonstrated qualitative agreement between experimental and simulation
results for the tensile strength of small planar fiber networks in Chapter 6. The exper-
iments are currently being expanded to study the tensile strength of small networks

of various fibers. These will include hardwood and softwood fibers that have been
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screened and refined to various degrees, as well as nylon fibers. The tensile tests on
these small networks will probe the effects of fiber properties, interactions, and testing
parameters on network strength, as well as failure mechanisms. In order to compare
directly with the simulation, the experimental approach must be modified in order to

investigate system parameters (e.g., fiber stiffness) accessible to the simulations.

7.2.2 Simulations

Simulating flexible fiber suspensions has aided in the understanding of the factors
that affect the microstructure of fiber suspensions. The current model may be fur-
ther utilized to probe the parameter space, thus performing a more exhaustive study
of factors such as fiber aspect ratio, shape, flexibility, and friction, which would in-
clude multiple initial configurations to gain better statistical data. Additional model
features may be added, such as hydrodynamic interactions, fibers of various cross
sectional shapes, rigid fibers with permanent deformations, and distributions of fiber
shapes and lengths, to name a few.

We suggested in Chapter 3 that the values of the stiffnesses used in the sim-
ulations were much lower than experimental values. Simulating suspensions of fibers
with large stiffnesses requires vast amounts of computer time. Therefore, it may be
prudent to develop a new model specifically for very stiff fibers that experience only
small perturbations in shape, such as that employed by Joung et al. [42].

In the model employed in this thesis, fibers are assumed to be large enough
that Brownian motion is negligible. However, numerous interesting and important
fiber systems exist in which Brownian motion becomes a factor; for example, carbon
nanotubes and tubular viruses. Brownian motion fundamentally changes the model

employed here, in that one needs to solve stochastic differential equations for the
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motion of a fiber, which involves small time scales. Investigation of the relative
importance and interplay between the various dynamics on different time scales (i.e.,
Brownian fluctuations, fiber bending, fiber rotations) appears to be well-suited for

particle-level simulations.
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Appendix A

Stress in a suspension of

interacting fibers

A.1 (Generalized particle stress contribution

The bulk average stress in a suspension of particles is found by averaging the stress

o over a volume of fluid V' that contains many particles [7],

<Uij> = %/VO'Z‘J‘ dv. (Al)

The integral can be separated into an integral over the fluid volume alone, and inte-

grals over the particle volumes,

N
1 1
J \% VoSV, J Vv Z v, J

where V/, is the volume of a particle and N is the number of particles in the volume V.

Assuming that the fluid is a Newtonian liquid (viscosity 7,), the bulk stress becomes

1 Ou;  Ou;
(i) = —Pbij + V/no (8 - 895,) dv (A.3)

au, an
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where the isotropic part of the stress is lumped into an effective pressure P, and u is
the velocity at point x in the fluid. The first integral contains the volume averaged rate
of strain tensor, which may be equated with the applied, macroscopic rate of strain,
E°. The sum of the integrals over the particles is simply the particle contribution to

the stress oP and the bulk suspension stress may be written

(03) = —Pdij + 20, B + o} (A.4)

13

where P is the bulk pressure.

The particle contribution to the stress may be simplified by rearranging terms,

N
1 0 00 ou; Ou;
| — L ) . { J
05 = v E /Vp [3% (Uzkl’]) Bz i — Mo (aTj + amz)} dV. (A.5)

The second term in the integrand contains the divergence of the stress field, V-0, and

this term vanishes for a system in which inertia and body forces may be neglected.
The divergence theorem is then applied to convert the volume integrals to surface

integrals to give

N
1
op = v Z ﬁp [ (oipx;) — 0o (wing + niuj)] dS, (A.6)

where n is the outward directed unit normal vector to the particle surface. The second
term in Eq. (A.6) integrates to zero if the particle is rigid. The particle stress can
be assumed to be symmetric as well, if no external torques act on the suspension [7],
which simplifies oP to

N
1 1
Tl = Z {ﬁ jip [(oirne)r; + 25(ojn)] AS — W(Sij ]ip Tk Mk Tm dS} , (A7)

where the second integral is subtracted in order to force the stress to be traceless.
The particle contribution to the stress can be further simplified by separating

the integrals in Eq. (A.7) into two parts: that representing the contribution to the
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stress arising from the disturbance to the flow field caused by the presence of the
particles, and that representing the contribution caused by non-hydrodynamic inter-
actions. Inserting x = (x — x;) + r;, where r; is the center-of-mass of particle 7, the

particle stress becomes (using vector notation)

o = %Z{%ﬁ (o n)(x — r;) + (x — 1;)(o - n)] dS— (A.8)

%5]£p (o n)- (x—17)] dS} 4

%Z{%]i (o - n)r; + 130 - m)] dS — %Wip (o n) -1 dS}.

The second summation may be simplified by recognizing that r; can be brought
outside the integral. The resulting integral is the definition of the hydrodynamic

drag force (F™%) on the particle, and thus

ji(o-~n)ridS: [%S

The hydrodynamic force is zero for particles that only interact via hydrodynamic dis-

1 P

(o -n) dS] r; = FYr;. (A.9)

turbances, but has a non-zero value if there are mechanical contacts between particles.

Thus, the particle contribution to the stress may be written

oP = % 3 [Si + % (F?ydri + riF?ydri> - % (F?yd : rl-) 6] ) (A.10)
where
S — %fi (o n)(x —11) + (x — 13)(0 - 1)] dS — éaﬁp (o n)- (x—r,)] dS,
(A11)

represents the contribution that remains non-zero in the absence of non-hydrodynamic

interparticle forces.
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A.2 Particle stress for a flexible fiber suspension

The particle contribution to the stress is desired for suspensions of flexible model
fibers, each composed of Ny, rigid spherocylinders. The expression for oP for a
volume of the suspension containing Ny, particles is
o 1 1
oP = n <Z [si +3 (F?ydri + riF?yd> - (F?yd . ri) 51 > , (A.12)
i—
where n is the number density of fibers and the angled brackets (...) represent the
average over all fibers. To evaluate o?, an approximate expression for S; from slender-
body theory is employed [6].

In slender-body theory, valid for particles that have large ratios of the length
to diameter (r, > 1), the force around the edge of a cross section of the particle
is approximated as a point force on the centerline of the particle, o - n|, = F(s),
where s is a point along the centerline of the fiber. The vector from the center of the
segment to a point on the surface can be approximated as x — r; &~ sp;, where p; is
the orientation vector of the fiber segment. Incorporating these approximation into
Eq. (A.11), the surface integral becomes a line integral along the contour of the fiber

segment, giving

¢ l
&:%/;ﬁmmﬁwmﬂwﬂﬁ—éﬂﬂwmwrmwh (A.13)

where / is the segment half-length. Batchelor [6] derived an expression for F(s) for a

body of circular cross section of the form

47,

Fi(s) = In(2ry)

5 3] (U¥0) - ul). (A.14)

where u(s) = 1;(s) + sp;(s) is the velocity at position s along the segment. Equa-

tion (A.14) is inserted into Eq. (A.13) and the integration is performed assuming that
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the imposed flow field U is linear, which results in

4,03

S, = et
3In(2ry)

E* - p;p; + pip; - E™ — pip;pip; : E— (A-15)

. . 1 ~
(pipi + pipi) — gpipi E (5:| .

The net hydrodynamic drag force on a segment, F?yd, is also approximated
using Eq. (A.14), in which the velocities are based on those at the fiber segment

centers, to give

81Nl 1 . :
= iy (8 gpp (0 k) 10
1%

Finally, the terms S; and the net force contributions are combined to calculate the
total particle contribution to the bulk stress by substituting Eq. (A.15) and (A.16)
into Eq. (A.12) to give

. Nieg

4rnlin, |3 {

o’ = — E E* - p;pi + pip; - E* — pipipip; : E™— (A.17)
31n(2rp) <Z,:1

. . 1 o
(pipi + pipi) — épipi cE%°6 +

3 1 o . 1 o
I ({5 - ipipz’:| (U™ —1)r; + 1 {5 - §pipi1 (U I'z))

o) )
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Appendix B

Fiber bending

B.1 Radius of curvature for a U-shaped model fiber

The shape of fibers at equilibrium may not be inherently straight, where equilibrium
is defined as the state of a fiber in which there are no forces or torques acting on the
body. The fiber model employed in this thesis is capable of representing a variety
of shapes which are only limited by the number of bodies in the fiber. One simple
equilibrium shape that was used is a U-shaped fiber. Its shape may be characterized
by a radius of curvature (Ry) regardless of the number of segments in the body.
The radius of curvature is defined by fitting a circle to the equilibrium shape of
the fiber. Since the fiber is made up of a discrete number of bodies, several different
circles may be selected to represent the shape of the fiber. Figure B.1 demonstrates
two such circles: (a) a circle passing through the joints of the fiber, and (b) a circle that
is tangent to the segments at their centers. The equilibrium bending angle, 6;4, is the
angle between the orientation vectors of two connected segments, 654 = cos™ (p;_1-p;)

(e.g., 0;" = 0 for a straight fiber). The radius of curvature of the fiber is defined as
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(a)

Figure B.1: Two methods to describe the radius of curvature Ry for a U-shaped fiber

the average of the radii of curvature of methods (a) and (b),

1 l n l
2 |sin(6e1/2) = tan(f°a/2) |

method (a) method (b)

Ry = (B.1)

B.2 Fiber flexibility

The flexibility of a model fiber made up of discrete bodies that only deforms at joints
may be approximated from continuum theory [37]. Consider a continuous body that
has been deformed slightly from its equilibrium configuration due to an external
torque M as shown in Fig. B.2. There exists a surface in the body that does not
change length after bending called the neutral surface. The normal strain e is defined
with respect to the neutral surface as,

€= AIEEO %_’fﬂy’ (B.2)
where As|, is the length of a line segment in a thin slice of the body at position
y from the neutral surface and As’|, is the length of the same line segment after
straining. If the body is deformed slightly from the equilibrium configuration, the

value of As|, is approximated using the radius of curvature R{; and the amount of

angular deformation A6 (see Fig. B.2). The normal strain becomes

¢~ lim (Ry —y)A0 — RyAD  —y
A6-0 Ri; A Ry

(B.3)
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neutral
surface

Figure B.2: Continuous fiber subjected to an external torque and deformed slightly
from its equilibrium configuration.

The external torque that bends the body is balanced by an internal restoring
torque that tries to force the body back into its equilibrium configuration. The

restoring torque Y is defined as
Y=-M=- /y dF™, (B.4)

where F'™ is the force acting parallel to the neutral surface, and is calculated from the
normal stress (o) on a cross section of the body (positive torque is in the clockwise
direction). If the material is approximated as Hookean (perfectly elastic, o = Eye€),

the restoring torque becomes

Y = — /y(—a) dA = — /y(—Eye)dA, (B.5)

where A is the cross sectional area of the body and Ey is the Young’s modulus of the

material. Equation (B.3) is substituted for the strain to give

by
Ry

EvI

Y = 2dA = ——~
y R{J Y

(B.6)

I

where [ is the cross-sectional area moment. The value of the radius of curvature is
approximated as Ry, ~ 2¢/A0 where ¢ is the half length of the body. The restoring

torque is thus approximated by

Y = ———A4f. (B.7)
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The continuous body result in Eq. (B.7) can be applied to a system of discrete
segments by imagining a spring at each joint that attempts to push or pull segments
back to an equilibrium configuration as shown in Fig. B.3. The segments are 2¢
in length which makes the magnitude of the restoring torque acting on a segment
Y = —lk,Ax where k, is the spring constant and Ax is the distance the spring is
deformed from equilibrium. If £ > Az, the deformation of the spring is Az ~ (A0,

and for small deformations Y is then

Y = — k0? AO = —k, A0, (B.8)
~—

Kb
in which Af# = 6 — 0°? is the change in the bending angle of the joint from its
equilibrium position, and &y, is called the bending constant. Equating Eq. (B.7) to

Eq. (B.8), the bending constant r; can be related to the properties of the material as
20k, = By I. (B.9)

The direction of the bending torque on a fiber segment is in the direction opposite to

the direction in which A8 is measured.
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Figure B.3: Fiber restoring torques at each joint are modelled as a virtual spring.
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Appendix C

Details of the friction constraints

The first step in determining the dynamics of a suspension of fibers using our simula-

tion technique is to identify the groups of contacting segments. This is accomplished

*

ut» then the contact is counted.

by calculating the separation distances hj;. If hj; < h
Figure C.1 illustrates a cluster of four fiber segments with three contacts. Note that
the contact between fiber 5 and fiber 1 forms a separate group from the highlighted
bodies, because the contact on fiber 1 occurs on a different segment. For simplicity,
we will ignore the segment number involved in the group (all segment 2), and just
refer to the fiber segments as segments 1-4.

To find the friction forces Fi¢ for each of the three contacts, we solve Eq. (2.82),

which is restated here,

Ry -Fr=vVp — 25 - X. (C.1)

Using the nomenclature developed in Chapter 2, the matrix Rr necessary to solve
for the forces (Fiic Fiic Fiic) jg

Q14,41 0 Q14,43
Rr = 0 02332 02334 | - (C.2)
Q3441 Q3432 03443

The diagonal components are direct contributions to the contact force, and the off-

diagonal tensors represent indirect contributions to the contact forces because of
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Figure C.1: Example contact group consisting of 4 segments (highlighted) and 3
contacts.

multiple contacts on a single segment. The diagonal tensors have the form expressed

in Eq. (2.84). For example, for the first contact,
(Jh - inT) ey
!
Q401 = («714 - 41T) ety |- (C.3)

Ny
The off-diagonal components are classified according to Fig. 2.12, and the example

here corresponds to the following cases,

Qua43 — Case IV,
03,41 — CaselV,



and the values in terms of the tensors J and J' defined in Eq. (2.76) are

014,43

023 34

034 41

034,32
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Appendix D

Simulation codes

D.1 Flexible fiber code

This section contains the FORTRAN 90 code (compiled with PGI Workstation 3.2,
from Portland Group, Inc.) utilized to simulate flexible fiber suspensions with periodic
boundary conditions in arbitrary linear flow fields, using the approximation to the
direct integration method described in Section 2.9.2. The main body of the code is
contained in the program file flexfric.£90. The subroutines called in flexfric.f90

are separate files and include:

neighbor list.f90 This file contains the subroutine neighbor_list which calcu-
lates the neighbor list of each fiber segment. It also contains the subroutine
parallel, which is used to find the separation between two segments with

centerlines that are parallel to each other.

delta_twist.f90 This file contains the subroutine delta_twist, which calculates
the separation distances between fiber segments and calls the sorting subrou-
tine (sort, described below). The subroutine also calculates the bending and

twisting restoring torques in each joint.
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sort.f90 This file contains the subroutine sort, which sorts contacting segments

into groups.

friction_forces.f90 This file contains the subroutine friction_forces, which cal-
culates the friction forces (F) at contact points based on the inextensibility

forces from the previous time step (Xprev,)-

x_forces.f90 This file contains the subroutine x_forces, which calculates the new

values of the inextensibility constraint forces.

motion_integrate.f90 This file contains the subroutine motion_integrate, which

integrates the fiber center of mass velocities (Rey) and the time derivatives of

the Euler parameters (q), to obtain the new positions and orientations.

Sliding friction is included by substituting the file kinetic friction forces.f90
for the file friction forces.f£90, which contains the updated version of the subrou-

tine friction_forces for kinetic friction.

D.1.1 Definition of variables

The following section defines the variables used in the code flexfric and subsequent
subroutines, and how they relate to the nomenclature used in this document. The

input parameters read into the code from the file Parameters.in are:

nfib: number of fibers in the simulation cell (Ngy,)
nseg: number of segments per fiber (Nge,)
rp: fiber segment aspect ratio (r,, = rp/Nseg)

kb: the dimensionless fiber bending constant (kj)
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mu_stat: static coefficient of friction (u5%")

mu_kin: kinetic coefficient of friction (p*®)

contact_cutoff: cut-off distance for counting a segment-segment contact (hy,)

rep_cutoff: cut-off distance for calculating the normal force between fiber segments
(M)

neighb cutoff: cut-off distance for finding neighbors to a fiber segment (A7, )

dt: dimensionless time step for integration (A~)

strain: total strain of the simulation run (vg,)

sidex,sidey,sidez: the dimensions of the central simulation cell in the z, y, and z

directions, respectively.
fstar: magnitude of the repulsive normal force (F*)
fact: decay parameter of the repulsive normal force (a*)
Astar: magnitude of the attractive normal force (A%)
decatt: decay parameter of the attractive normal force (a’})

duxdx,duxdy,duxdz,...,duzdz: nine components of the ambient flow velocity gra-

dient tensor of the (V*U>*)

Three additional input files, Centers_of Mass.in, Euler Parameters.in, and
Equlibrium Angles.in, are used to initialize the values of the fiber positions, orien-

tations, and equilibrium angles, respectively. The following variables are initialized:
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rcmx (m) ,remy (m) ,remz (m): coordinates of the center-of-mass of fiber m (R},,) in

Centers_of Mass.in

q0(m,i),q1(m,1i),92(m,1),q3(m,i): Euler parameters of fiber segment ¢ on fiber

m (q;) in Euler Parameters.in
theta eq,phi_eq: the equilibrium angles at a joint (7%, ¢:?), in Equlibrium Angles.in
The remaining important variables in the code include:

A11(m,i),A12(m,i) ,A13(m,i) ,A22(m,i),A23(m,1),A33(m,i): inverse of the trans-

lational resistance tensor for fiber m segment i (A1)

C11(m,i),C12(m,i),C13(m,1i),C22(m,1),C23(m,i),C33(m,1i): inverse of the rota-

tional resistance tensor for fiber m segment i (C; ")

D1(m,i),D2(m,i) ,D3(m,i): the rotational term from the hydrodynamic torque on

an isolated segment (H : E**)

E11,E12,E13,E22,E23,E33: independent terms of the rate of strain tensor of the

ambient velocity field (E**)

exl(gc,nc),ex2(gc,nc) ,ex3(gc,nc): unit vector that describes the plane of con-

tact, for contact nc in group gc (e}j)

eyl(gc,nc),ey2(gc,nc),ey3(gc,nc): unit vector that describes the plane of con-

tact, for contact nc in group gc (efj)

fcx(m,i) ,fcy(m,i),fcz(m,i): components of the total normal force exerted on

fiber m, segment 7 (Zjvcz FE*)
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fx(m,i),fy(m,i),fz(m,i): components of the total friction force exerted on fiber
m, segment i (Zjvc’ Flicr)

g(gc,nc): centerline separation distance between fiber segments at contact nc in

group gc (g55)

Gijx(gc,nc),Gijy(gc,nc),Gijz(ge,nc): coordinates of the vector from the seg-
ment center ¢ to the contact point with segment j, for contact nc in group gc

(G3)

Gjix(gc,nc),Gjiy(gec,nc),Gjiz(ge,nc): coordinates of the vector from the seg-
ment center j to the contact point with segment ¢, for contact nc in group gc

(GH)

ifiber(k,nc,gc): the fiber segments involved in contact nc in group ge (k = 1 gives

fiber m, k = 2 gives segment i, k = 3 gives fiber n, and k = 4 gives segment j)
kt: twisting constant at a joint (k} = 0.67x;)
nclose(m,i): number of neighbors of fiber m segment i
ncnt (ge): number of contacts in group ge (Ne¢,)
next (k,nc,i): neighbor nc of segment i (neighbor list)
ngrp(i): group number of fiber segment i

nx(gc,nc) ,ny(gc,nc) ,nz(gc,nc): coordinates of the normal vector from segment ¢

to segment j for contact nc in group gc (nij)

Omega_x,0mega_y,Omega_z: the angular velocity of the ambient flow field (£2°°)
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px(m,i),py(m,i),pz(m,i): coordinates of the orientation vector of fiber m, segment
i (pz)
q0dot (m,i) ,qldot(m,i),q2dot(m,i),q3dot (m,i): time derivatives of the Euler pa-

rameters of fiber segment ¢ on fiber m (q;)

R11(m,i),R12(m,i),R13(m,i),R21(m,i) ,R22(m,i) ,R23(m,i): body rotation ma-
trix components of fiber m segment i, where row 3 of the matrix is the fiber

segment orientation vector components, px(m,i),py(m,i),pz(m,i); (R;)

Rlleq(m,i) ,R12eq(m,i),...,R33(m,1i): equilibrium frame body rotation matrix of

the joint (m, i) (R
rx(m,i),ry(m,i),rz(m,i): coordinates of the center of segment i on fiber m (r})

si(gc,nc): distance from the center of segment i to the point of contact with segment

j with respect to the orientation vector (s;)

sj(gc,nc): distance from the center of segment j to the point of contact with segment

i with respect to the orientation vector (s7;)

Stress(i,j): theij component of the dimensionless stress tensor at the given strain

interval (oP(v)/0*, where o* = mnL*n,y/6NZ., In 2r,)

Stress_Avg(i,j): the ij component of the dimensionless time averaged stress tensor

(same term as Stress averaged over all of the configurations obtained for v >

’YSS)

tcex(m,i) ,tey(m,i) ,tcz(m,i): components of the total normal torque exerted on

fiber m, segment i (Ejvc (G}; x Fi])
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tx(m,i),ty(m,i),tz(m,1i): components of the total friction torque exerted on fiber

m, segment ¢ (Zj\fcz (G, % Fglc*])

ucmx (m) ,ucmy (m) ,ucmz (m): coordinates of the translational velocity of the center-

of-mass of fiber m (Rf;m)

ux(m,i),uy(m,i),uz(m,i): components of the translational velocity of segment ¢
on fiber m (r})

wx(m,i),wy(m,i),wz(m,i): components of the angular velocity of segment ¢ on fiber
m (w;)

Xa,Ya,Xc,Yc,Yh: scalar resistance functions for a prolate spheroid of aspect ratio
0.77p, (XA, Y2, X Y€, and y'H)

Xx(m,i) ,Xy(m,i),Xz(m,i): the coordinates of the inextensibility force at joint ¢ on
fiber m (X})

Yx(m,i),Yy(m,i),Yz(m,i): the coordinates of the total restoring torque at joint ¢

on fiber m (Y?)

At the specified time intervals, the code outputs various quantities. The output

files include:
center mass.dat: all of the fiber centers of mass at the given strain interval

euler param.dat: all of the fiber segment Euler parameters at the given strain in-

terval

inextens next guess.dat: all of the inextensibility constraint forces at the given

strain interval
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Number of Contacts.dat: the number of groups, contacts, and overlapping fibers is

written at the given time interval

Contact_info.dat: this file contains the fiber segments involved in a contact, the

* *
ijr S

7i» and g7 at the given strain

number of the contact, and the values of s

interval
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D.2 Code to calculate the average particle stress

The particle contribution to the stress (o) is calculated using the program stress.£90.
The program reads the input parameter file (Parameters.in) and the configura-
tion output files from a simulation code (center mass.dat, euler param.dat, and
inextens next_guess.dat). The code calculates the average stress for every config-
uration read, and outputs the six independent components of the suspension stress
(oP/o*, where 0* = mnL?n,7/6NJ,In2r,) into the file stress tensor.dat at the
given time intervals. The steady-state stress is found by averaging the stress compo-
nents starting at a specified strain (7y), and the final steady-state stress is found in
the file Results_stress.dat.

The following pages contain the code stress.f90. The subroutines called,
delta_twist, sort, friction_ forces, and x_forces, and the variable definitions

are the same as those used in flexfric.£90.
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D.3 Planar network elongation code

The code used to find the tensile strength of a fiber network is in the file called
Tensile approx.f£90. The code has the same basic structure as the flexfric pro-
gram used for linear flows. The basic difference is in the boundary conditions, and
the fact that the extra constraint force for pulling fibers must be calculated. For this
system, the periodic boundary conditions are only applied in the y direction, and
there are additional forces in the z direction for the fibers that interact with the top
and bottom surfaces via repulsive forces only. Included below is the main body of
the code, Tensile_approx, and two major subroutine revisions to delta_twist and
x_forces. The other subroutines are the same as those above with the correction to

the periodic boundary conditions as demonstrated in delta_twist.
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D.4 Example simulation: The star test floc
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To demonstrate the typical input and output files of the simulations, we will present

data for two time steps of the “star” test floc (illustrated in Fig. D.1). The parameter

Figure D.1: Star configuration used in example files.

file, Parameters.in appears as

5

7

8.0
38.0
20.000
20.00
0.33

0.66

5.0

1.85

0.0001

0.0002

200.0 200.0 200.0

:nfib

:nseg

1rp

:kb

:mu_stat
:mu_kin
:contact_cutoff
:rep_cutoff
:neighb_cutoff
:overlap

:dt

:strain
:sidex,sidey,sidez



= = =, O

150.0
20.0

o
(@)

35.0

O O OO O O O O o
O O O O O OO O oo

The centers of mass of the fibers [remx (m), remy(m), rcmz(m)| are

adbd W -

The fiber segment Euler parameters [q0(m,1),

:fraction_rp
:config_write
:contact_write
:extra_write
:check_neighbor
:fstar

:fact

:Astar

:decatt
:delta_rx
:duxdx

:duydx

:duzdx

:duxdy

:duydy

:duzdy

:duxdz

:duydz

:duzdz

-0.0000000244
10.4451728846
-10.4451728628
-0.0000000142
0.0000000223

3.4926345144
2.4899385274
2.4899385247
-1.6756001142
2.1520755077

-0.0000000147
21.3245014739
-21.3245014771
0.0000000023
0.0000000172
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ql(m,i), q2(m,i), q3(m,i)] are



GO oo OO PP P OO WWWWWNNNMNMNNMMNMNNRE, R, RPR R BRP -

~NOoO O WNEFE, NOOOEWONE, NOOOPE WO, NOO OO WO, NO O N -

O O O O OO O OO OO ODODODODODODODODODODODODODODOODOOOOOOoO oo

.9610773292
.9627437545
.9682988971
.9730774843
.9682988968
.9627437543
.9610773290
.5001700275
.4968494821
.4875819928
.5024695172
.5341660565
.5657786419
.5742575118
.5742575113
.5657786413
.5341660558
.5024695176
.4875819943
.4968494837
.5001700291
.1145106768
.1240927777
.1368841123
.1405195473
.1368841149
.1240927811
.1145106803
.8152475853
.8105313587
.8059105681
.8056981498
.80569105681
.8105313588
.8152475854

.0723833950
.0731900752
.0761133800
.0000000028
.0761133746
.0731900692
.0723833889
.1155868662
.1159362444
.1171688056
.1367899625
.15621875211
.1470189806
.1456192163
.1456191995
.1470189637
.15621875038
.1367899446
.1171687876
.1159362265
.1155868483
.0241004144
.0229203624
.0149014062
.0000000160
.0149014382
.0229203943
.0241004462
.0495575408
.05601339450
.0376640415
.0000000000
.0376640413
.05601339447
.0495575405

O O O O O OO OO OO ODODOODODODODODODODODODOODOOOOOOOOOOO oo

.2663893755
.2600415982
.2374601445
.2304782192
.2374601461
.2600415998
.2663893771
.8565639256322
.8573500048
.8626996957
.8532857070
.8314165266
.8112236482
.8055076317
.8055076350
.8112236514
.8314165300
.8532857100
.8626996981
.8573500071
.8553925345
.9864162955
.98563874091
.9868213790
.9900779044
.9868213785
.9853874084
.9864162948
.57563332270
.5819215516
.5900371645
.5923263386
.5900371645
.5819215656156
.57563332269

The equilibrium angles in the joints (theta_eq and phi_eq) are
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.0113009753
.0120848351
.0147200236
.0000000109
.0147200454
.0120848568
.0113009969
.0690886079
.0681934646
.0654561407
.0267655115
.0158789720
.0140050119
.0134465282
.0134465402
.0140050237
.0158789831
.0267655012
.0654561305
.0681934543
.0690885976
.1152795161
.1143997090
.0849956112
.0000000022
.0849956068
.1143997050
.1152795124
.0436703871
.0435064572
.0307525729
.0000000003
.0307525734
.0435064576
.0436703876
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

The output files include the fiber centers of mass at the designated strain

intervals, in the file center mass.dat:
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The output fiber segment

(euler_param.dat):

.000000

0.000000
10.445173
-10.445173
0.000000
0.000000

.000100

0.000000
10.447668
-10.447668
0.000000
0.000000

.000200

0.000000
10.449886
-10.449886
0.000000
0.000000

OO WN P N O WN
O O O O O OO OO OO oo

.961077
.962744
.968299
.973077
.968299
.962744
.961077
.500170
.496849
.487582
.502470
.534166
.565779

.492635 0.
.489939 21.
.489939 -21.
.675600 0.
.152076 0.
.492488 0.
.490019 21.
.490019 -21
.675699 0.
.152169 0.
.492501 0.
.490152 21.
.490152 -21
.676082 0.
.152273 0.

0.072383
0.073190
0.076113
0.000000
.076113
.073190
.072383
.115587
.115936
.117169
.136790
.152188
.147019

000000
324501
324501
000000
000000

000000
324870

.324870

000000
000000

000000
324918

.324918

000000
000000

.266389
.260042
.237460
.230478
.237460
.260042
.266389
.855393
.857350
.862700
.8b3286
.831417
.811224

O O O O OO OO OO O oo

Euler parameters at the
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designated strain intervals are

.011301
.012085
.014720
.000000
.014720
.012085
.011301
.069089
.068193
.065456
.026766
.016879
.014005
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.000100

-

O+ WONEFE, NOOOPE WONEFE,NOO WD

O O O O O OO OO OOOOO OO o oo

.574258
.574258
.565779
.534166
.502470
.487582
.496849
.500170
.114511
.124093
.136884
.140520
.136884
.124093
.114511
.815248
.810531
.805911
.805698
.8056911
.810531
.815248

.961065
.962769
.968254
.973074
.968254
.962769
.961065
.500144
.496835
.487597
.502469
.534240
.565618
.574272
.574272
.565618
.534240
.502469
.487597

.145619
.145619
.147019
.152188
.136790
.117169
.115936
.115587
.024100
.022920
.014901
.000000
.014901
.022920
.024100
.049558
.050134
.037664
.000000
.037664
.050134
.049558

.072406
.073054
.076268
.000000
.076268
.073053
.072406
.115567
.115966
.117057
.136509
.152621
.147026
.145603
.145603
.147026
.152621
.136509
.117057

O O O O O OO OO0 OO OOO OO OO OO oo

O O O O OO OO OOOOOO OO o OoOo

.805508
.805508
.811224
.831417
.853286
.862700
.857350
.855393
.986416
.985387
.986821
.990078
.986821
.9856387
.986416
.575333
.5681922
.590037
.592326
.590037
.581922
.575333

.266428
.259986
.237577
.230493
.237577
.2b59986
.266428
.855410
.857361
.862701
.8b3336
.831294
.811334
.805500
.805500
.811334
.831294
.853336
.862701

.013447
.013447
.014005
.015879
.026766
.065456
.068193
.069089
.115280
.114400
.084996
.000000
.084996
.114400
.115280
.043670
.043506
.030753
.000000
.030753
.043506
.043670

.011315
.012056
.015008
.000000
.015008
.012056
.011315
.069090
.068109
.065519
.026599
.015654
.014018
.013462
.013462
.014018
.015654
.026599
.065519
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6 O
7 O
1 0
2 0
3 0
4 O
5 0
6 O
7 O
1 0
2 0
3 0
4 0
5 0
6 O
7 0
.000200

[E

B WO N, NP WONEFE, NO O O, N WwWN

O O O OO OO OO OODODOOOOOOOOOOoOooo

.496835
.500144
.114511
.124038
.136831
.140498
.136831
.124038
.114511
.815203
.810548
.805915
.805678
.806915
.810548
.815203

.961057
.962779
.968230
.973067
.968230
.962779
.961057
.500117
.496833
.487578
.502460
.534280
.565519
.574268
.574268
.565519
.534280
.502460
.487578
.496833
.500117
.114494
.123998
.136788
.140472

.115966
.115567
.024097
.022717
.014917
.000000
.014917
.022717
.024097
.049546
.050285
.037780
.000000
.037780
.050285
.049546

.072406
.072990
.076329
.000000
.076329
.072990
.072406
.1155563
.115967
.117002
.136532
.152698
.147094
.145589
.145589
.147094
.152698
.136532
.117002
.115967
.115553
.024062
.022663
.014886
.000000

O O O O OO OO OO OO OO oo

O O O O O OO OO ODODODOODOOOOOOOOOoOOo oo

.857361
.855410
.986421
.985398
.986819
.990081
.986819
.985398
.986421
.575397
.581910
.590019
.592354
.590019
.581910
.575397

.266456
.259968
.237649
.230521
.237649
.259968
.266456
.855429
.857366
.862718
.853338
.831254
.811391
.805505
.805505
.811391
.831254
.8b53338
.862718
.857366
.855429
.986427
.985403
.986822
.990085

O O O O O O O o

.068109
.069090
.1156237
.114412
.085107
.000000
.085107
.114412
.1156237
.043669
.043184
.030842
.000000
.030842
.043184
.043669

.011323
.012088
.015092
.000000
.015092
.012089
.011323
.069082
.068059
.065543
.026615
.015638
.013979
.013477
.013477
.013979
.015638
.026615
.065543
.068059
.069082
.115214
.114420
.085141
.000000
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.136788
.123998
.114494
.815165
.81056562
.805924
.805659
.805924
.810552
.815165

O O O

O O O O

.014886
.022663
.024062
.049565
.050372
.037906
.000000
.037906
.050372
.049565

O O O O OO OO oo

.986822
.985403
. 986427
.575453
.581911
.589998
.592380
.589998
.581911
.575453

.085141
.114420
.116214
.043614
.042988
.030863
.000000
.030863
.042988
.043614
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The inextensibility constraint forces [Xx(m,1), Xy(m,i), Xz(m,1i)]are output at the

designated strain intervals in the file inextens next_guess.dat:

000100

11
1
1
11

0.
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
3
3
3

~NOoO OO WNEFP, N0 WO, NOOoWN
|
'_\
(o8]

1 0.
8.
.356708
. 732342
. 732342
.356708
.945158
.000000
.312483
. 854282
.066637
. 720952
.790727
.057214
.000000
.067214
. 790727
. 720952
.066637
. 8564282
.312483

000000
945158

.000000
.414426
.275594
.052780
.052780
.275593
.414426
.000000
.912840
.209117
.074243
. 758888
.867540
.287083
.000000
.287083
.867540
. 758888
.074244
.209117
.912840

.000000
.199382
.915071
.875272
.875272
.915071
.199382
.000000
.402027
.433969
.083512
.399209
.197740
.027709
.000000
.027709
.197740
.399209
.083512
.433969
.402027
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7

.000200

1

OO WNEFE, NOOTPE WO, NP WONE NO O N

0.
8.
.283273
2.
2.

11

11

.000000
.638623
.076507
.280106
.280106
.076507
.638623
.000000
.694651
.996154
.024515
.024515
.996154
.694651

000000
447680

833793
833793

.283273
.447680
.000000
.492539
.833429
.931681
.626911
.410398
.828959
.000000
.828959
.410397
.626911
.931681
.833429
.492539
.000000
.067618
.941304
.884040
.884040
.941304

.000000
.597692
.487677
.840557
.840557
.487676
.597692
.000000
.041156
.716110
.354588
.354588
.716110
.041156

.000000
.864983
.351111
.196053
.196053
.351111
.864983
.000000
.695563
.183719
.448566
. 708077
. 745143
.228660
.000000
.228660
. 745143
.708078
.448566
.183719
.695563
.000000
.397758
.079896
.675987
.675987
.079896

11
11
11
11

GON W WwWN oo

0 w O

2
2

o O

O = 00 01 O W

.000000
.127467
.859292
.912845
.912845
.8569292
.127467
.000000
.504406
.122702
.369749
.369749
.122702
.504405

.000000
. 743926
.945914
.882831
.882831
.945914
. 743926
.000000
.383355
.065427
.125947
.320957
.569918
.554379
.000000
.5564379
.569918
.320957
.125947
.065427
.383355

0.000000

.710206
13.
13.
13.
13.

488825
878221
878221
488825
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.067618
.000000
.629950
.134237
.126759
.126759
.134237
.629950

.397758
.000000
.051289
.008785
.838575
.838575
.008785
.051289

O 01O O O -

.710206
.000000
.5681923
.268916
.252596
.252596
.268916
.581923
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The number of groups, contacts, and overlapping fiber segments in the suspension at

the given strain interval are output in the file Number of Contacts.dat:

0.0001000
0.0002000

7
7

The contact specifics are output in the file Contact_info.dat, which include (in

order) the strain interval, the first fiber segment in the contact (m,i), the second

fiber segment in the contact (n, j), the group containing the contact (gc), the contact

number in that group [nc], the contact position on fiber segment m, i [si(gc,nc)], the

contact position on fiber segment n,j [sj(gc,nc)], and the centerline-to-centerline

separation [g(gc,nc)]:

0.00010
0.00010
0.00010
0.00010
0.00010

N = D P
W oW

SN O W
N DD

D w NN -

= =N

-6.396966
0.000000
0.000000
6.396966

-5.100570

-0.487807
0.000000
0.000000
0.487807
0.079312

2.058803
2.024084
2.059454
2.058803
2.078914



O O O O O OO OO oo

.00010
.00010
.00010
.00020
.00020
.00020
.00020
.00020
.00020
.00020
.00020

W WNNNE PR, P, WWN
O W oW o s b w o wo,

OO N O W OO,
DN OON DD OONO

~NOoO OO WNNEENOO

e P e

.977024
.977024
.100570
.397766
.000000
.000000
.397766
.100121
.976297
.976297
.100121

.032985
.032985
.079312
.488535
.000000
.000000
.488535
.079906
.030541
.030541
.079906

N DNNDNDNDNDNDNDNDNDDNDDN

.099180
.099180
.078914
.060636
.025303
.061344
.060636
.080573
.100895
.100895
.080573
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